Journal Publications

A partial list of publications that emanated from the dissertations of our alumni.

Alum

Journal Publications

Aghor, Pratik

Class of '23

 

Aghor, Pratik, Atif, Mohammad, “Effect of outer cylinder rotation on the radially heated Taylor-Couette Flow”, Journal Physics of Fluid, 35, 094108 (2023). https://pubs.aip.org/aip/pof/article/35/9/094108/2909455/Effect-of-outer-cylinder-rotation-on-the-radially

Brand, Evan

Class of '17

 

Gibson, J. F., & Brand, E. (2014). Spanwise-localized solutions of planar shear flows. Journal of fluid mechanics745, 25-61. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/spanwiselocalized-solutions-of-planar-shear-flows/010C32EAB1B3072135D18019EC1CE3A2

Brand, E., & Gibson, J. F. (2014). A doubly localized equilibrium solution of plane Couette flow. Journal of Fluid Mechanics750, R3.  https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/doubly-localized-equilibrium-solution-of-plane-couette-flow/232951F61D8BD4C11740E1665B7C8627

Edwards, Madeline

Class of '21

 

Marianna A. Shubov and Madeline M. Edwards, "Stability of Fluid Flow through a Channel with Flexible Walls", International Journal of Mathematics and Mathematical Sciences, (2021); https://doi:10.1155/2021/8825677

Marianna A. Shubov and Madeline M. Edwards, “Analytical study of a model of fluid flow through a channel with flexible walls”, Math Meth in the Appl Sci. (2023); https://doi:10.1002/mma.8946

Laszlo, Kindrat

Class of 2019

 

Marianna A. Shubov, Laszlo P. Kindrat.  Spectral analysis of the Euler-Bernoulli beam model with fully nonconservative feedback matrix.  Mathematical Methods in the Applied Sciences, Volume 41, Issue 12, pp 4691-4713 (2018). https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.4922

Marianna A. Shubov, Laszlo P. Kindrat.  Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix.  IMA Journal of Applied Mathematics, Volume 84, Issue 5, pp 873-911 (2019). https://academic.oup.com/imamat/article-abstract/84/5/873/5582261

Marianna A. Shubov, Laszlo P. Kindrat.  Spectral Analysis and Numerical Investigation of a Flexible Structure with Nonconservative Boundary Data.  Edited Volume of Functional Calculus  (2019).

Marianna A. Shubov, Laszlo P. Kindrat.  Asymptotic distribution of the eigenvalues of the bending-torsion vibration model with fully nondissipative boundary feedback.  Studies in Applied Mathematics, Volume 150, Issue 4, pp 996-1025 (2023). https://onlinelibrary.wiley.com/doi/abs/10.1111/sapm.12562

Montemuro, Brandon

Class of '20

 

Montemuro B., White C, Klewicki J., & Chini, G. A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flowsJournal of Fluid Mechanics, 901, A28, 2020

Chini G, Montemuro B., White C, Klewicki J. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flowsPhilosophical Transactions of the Royal Society A , 375, 20160090, 2017

Parker, John

Class of '21

 

John E. Parker and Kevin M. Short, "Mutual Stabilization in Chaotic Hindmarsh-Rose Neurons", Dynamics 3(2), 282-298. https://doi.org/10.3390/dynamics3020017

John E. Parker and Kevin M. Short, "Cupolets in a chaotic neuron model", Chaos 32, 113104 (2022) https://doi.org/10.1063/5.0101667

John E. Parker and Kevin M. Short, "Sigmoidal synaptic learning produces mutual stabilization in chaotic FitzHugh–Nagumo model", Chaos 30, 063108 (2020) https://doi.org/10.1063/5.0002328

Storch, Laura

Class of '17

 

Laura S. Storch, James M. Pringle, Karen E. Alexander, David O. James.  Revisiting the logistic map: A closer look at the dynamics of a classic chaotic population model with ecologically realistic spatial structure and dispersal.  Elsevier, Theoretical Population Biology, Volume 114, pp 10-18 (2017).
https://www.sciencedirect.com/science/article/pii/S0040580916300995

Laura S. Storch, James M. Pringle.  A downstream drift into chaos: Asymmetric dispersal in a classic density dependent population model.  Elsevier, Theoretical Population Biology, Volume 123, pp 9-17 (2018). https://www.sciencedirect.com/science/article/pii/S0040580917301375

Laura S. Storch, James M. Pringle. Where and how do localized perturbations affect stream and costal ocean populations with nonlinear growth dynamics. Springer Link, Theoretical Ecology, Volume 13, pp 223-238 (2020). https://link.springer.com/article/10.1007/s12080-019-00446-6

Wen, Baole

Class of '15

 

B. Wen, Z. Ding, G. P. Chini, R. R. Kerswell. 2022 Heat transport in Rayleigh-Bénard convection with linear marginality, Phil. Trans. R. Soc. A 380, 20210039. https://royalsocietypublishing.org/doi/full/10.1098/rsta.2021.0039

B. Wen, G. P. Chini. 2019 On moderate-Rayleigh-number convection in an inclined porous layer. Fluids 4, 101https://www.mdpi.com/2311-5521/4/2/101

B. Wen, G. P. Chini. 2018 Reduced modeling of porous media convection in a minimal flow unit at large Rayleigh number. J. Comput Phys. 371, 551–563.https://www.sciencedirect.com/science/article/abs/pii/S0021999118303784

B. Wen, G. P. Chini. 2018 Inclined porous medium convection at large Rayleigh numberJ. Fluid Mech837, 670–702.

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/inclined-porous-medium-convection-at-large-rayleigh-number/2C8600F5C5610CB387EC114BE244DF49

B. Wen, G. P. Chini, R. R. Kerswell, C. R. Doering. 2015 Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convectionPhys. Rev. E 92, 043012. 

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.043012

B. Wen, L. T. Corson, G. P. Chini. 2015 Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech772, 197–224. 

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/structure-and-stability-of-steady-porous-medium-convection-at-large-rayleigh-number/1FFCFBDFE03EE59A84E82720EA00BED1

B. Wen, G. P. Chini, N. Dianati, C. R. Doering. 2013 Computational approaches to aspect-ratio-dependent upper bounds and heat flux in porous medium convection. Phys. Lett. A 377, 2931–2938.

https://www.sciencedirect.com/science/article/abs/pii/S0375960113008074

B. Wen, N. Dianati, E. Lunasin, G. P. Chini, C. R. Doering. 2012 New upper bounds and reduced dynamical modeling for Rayleigh-Bénard convection in a fluid saturated porous layer. Commun. Nonlinear Sci. Numer. Simul17, 2191–2199. https://www.sciencedirect.com/science/article/abs/pii/S1007570411003686