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Abstract

Velocity and magnetic field fluctuations in the solar wind show evidence that non-linear
turbulent dynamics are present in the interplanetary medium. The cascade of energy created
by these turbulent processes may provide a mechanism for in situ heating of the solar wind
plasma. We perform three studies analyzing the turbulent energy cascade at 1AU using 10
years of data from the Advanced Composition Explorer spacecraft. These studies employ
magnetohydrodynamic analogues to traditional hydrodynamic third-moment expressions.

In the first analysis, we compute energy cascade rates and compare them to proton
heating rates as inferred from the radial gradient of the solar wind proton temperature.
We find good agreement between energy cascade rates and proton heating rates. There is
a moderate excess of energy in the cascade (∼ 25–50%) which is consistent with previous
estimates for thermal electron heating in the solar wind.

In the second analysis, we apply third-moment theory to compute energy cascade rates
as a function of the normalized cross-helicity. We find, in contrast to intervals of smaller
cross-helicity forming the bulk of the observations, large cross-helicity intervals experience
a significant back-transfer of energy from small to large scales. This occurs in such a way
as to reinforce the dominance of outward-propagating fluctuations. We conclude this back-
transfer process must be a short-lived, transient phenomena in order to be in keeping with
solar wind observations.

Finally, we extend newly developed magnetohydrodynamic third-moment expressions,
which take into account the effects of large-scale velocity shear, to the solar wind. Limited
success is achieved with the new formalism when applied to solar wind data. The best
agreement is found for rarefaction intervals where the solar wind speed is decreasing as it
passes the spacecraft. We find that cascade rates increase with increasing shear magnitude
and that only a small amount of shear induced anisotropy is necessary to be consistent with
proton heating rates. We conclude the shear formalism is necessary when analyzing data
with a persistent shear of a single sign, but unnecessary when considering equal amounts of
positive and negative shear.
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Chapter 1

Introduction

This thesis pursues the ideas of hydrodynamic turbulence theory as they are extended to
include magneto-dynamics and the magnetohydrodynamic (MHD) equations. We apply
these concepts to the solar wind, a supersonic gas of electrically charged particles that fills
interplanetary space. In essence, the solar wind forms the perfect MHD wind tunnel to the
extent that any such system exists: There is a localized source, vast room to evolve, and
sensors (called spacecraft) placed at various points in the system.

A turbulent system is created through the non-linear interactions between fluctuations
within a fluid flow and is characterized by the movement of energy in a conservative fashion
from large to small scales. This concept is known as the “cascade” of energy. We focus on
third-moment theory (Kolmogorov, 1941b; Politano and Pouquet, 1998a,b), which provides
one of the few “exact” relationships in the field of turbulence. Third-moment theory has
a long standing history in hydrodynamics and allows one to compute the rate of energy
cascade in a turbulent system. The exploration of the MHD analogues to these expressions,
as they pertain to the solar wind, form the basis of the analyses within this thesis.

Turbulence plays a significant role in understanding the dynamics of the solar wind.
Observations show in situ heating is present as the solar wind plasma expands from the
Sun. The ultimate fate of cascading energy, when it reaches the smallest scales in the
turbulent system, is dissipation into heat. It is, therefore, suggested that turbulence can
provide sufficient energy to account for the observed heating in the solar wind. In this
thesis, we utilize third-moment theory to explore this problem, as well as, to build a deeper,
fundamental understanding of the magnetohydrodynamic turbulence present in the solar
wind.

In Chapter 2, we provide a broad context for the analyses described in this thesis. We
discuss the basic nature of the solar wind as a fast moving flow of plasma emanating from the
Sun. The solar wind is a dynamic and variable environment and we begin a discussion of this
variability by considering the solar activity cycle. We also discuss the variety of spacecraft
that make in situ measurements of the solar wind, including the Advanced Composition
Explorer which provides the plasma and magnetic field measurements used in our analyses.

In Chapter 3, we continue the examination of the variability of the solar wind in greater
detail. We consider transient phenomena, such as coronal mass ejections and shocks, which
are outside the scope of the theories we aim to analyze and must be removed from the solar
wind data. We also consider the variability and large-scale structure of the Interplanetary
Magnetic Field (IMF) and discuss the magnetohydrodynamic description of a plasma, which
gives rise to wave phenomena and turbulence in the solar wind. We finally consider the in
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situ heating of the solar wind protons.
Chapter 4 provides an overview of turbulence concepts from an observational viewpoint.

Drawing from well understood hydrodynamic concepts, we consider the three major sub-
ranges of the power spectrum in a turbulent system and discuss the dynamics that are
believed to be important in each range. These sub-ranges include: 1) energy-containing
range, where the large-scale fluctuations that drive the turbulence are generated, 2) the
inertial range, where energy cascades from large-scale fluctuations to small-scale fluctuations,
and 3) the dissipation range, where turbulent energy is finally dissipated into heat. In doing
this, we develop a picture of interplanetary turbulence.

In Chapter 5, we examine the derivation of the third-moment expressions, which are the
main focus of this thesis. These third-moments are generalizations of third-order structure
functions and arise from rigorous derivations of turbulent dynamics. We consider both hy-
drodynamic and magnetohydrodynamic third-moment theories and discuss the modifications
needed to apply them to the solar wind.

Chapter 6 discusses two early applications of third-moment theory to the solar wind by
MacBride et al. (2005) and MacBride et al. (2008). These analyses reveal cascade rates in
general agreement with solar wind heating rates and provide evidence for the evolution of
solar wind turbulence to a 2D geometry, which is expected by many authors. The MacBride
et al. (2005, 2008) analyses form the basis of our third-moment studies.

Chapters 7–9 outline the three main analyses of this thesis. In Chapter 7, we first refine
the error analysis techniques used in previous solar wind third-moment analyses in order
examine the convergence of third-moment expressions in the solar wind. We find results
that are in keeping with the analysis of Podesta et al. (2009) and demonstrate one of the
major limitations of third-moment analysis: the large amount of data required to converge
to a statistically significant result. In Chapter 7, we also perform an in depth comparison
between proton heating rates in the solar wind and turbulent energy cascade rates. We find
compelling evidence that there is enough energy present in the turbulent cascade to heat
both solar wind protons and electrons.

In Chapter 8, we attempt to better understand the nature of MHD turbulence, by using
third-moments to examine the dependence of the energy cascade rate on cross-helicity. The
cross-helicity provides a quantitative measure of the degree of correlation between magnetic
and velocity fluctuations and, in turbulence theory, acts as a “throttling” mechanism for the
energy cascade. We find the expected general decrease in the cascade rate with increasing
cross-helicity; however, at high cross-helicities we observe an unexpected back-transfer of
energy from small to large-scales.

Wan et al. (2009) criticize the results of Chapters 7 and 8, arguing they do not take
into account the large-scale shears present in the solar wind. They draw on hydrodynamic
concepts to develop a third-moment-like MHD formalism, which involves two additional
terms describing the effects a linear velocity shear has on the cascade. In Chapter 9, we
review the concepts, in both hydrodynamics and MHD, involved in developing a third-
moment shear formalism. We develop a basic model to apply these concepts to the solar
wind and perform a preliminary analysis of Advanced Composition Explorer data. We
conclude that while the velocity shear formalism is necessary when considering data with a
single shear direction, the results of Chapters 7 and 8, which consider both increases and
decreases in solar wind speed, are still valid.

Chapter 10 summarizes our results.
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Chapter 2

The Solar Wind

In order to provide a context for our studies of magnetohydrodynamic turbulence, we describe
the solar wind environment in which the turbulence evolves. The solar wind is a super-sonic
and super-Alfvénic (see Section 3.6) flow of plasma emanating in all directions and at all
times from the Sun. The solar wind is affected by the dynamics at its source (the Sun)
and, as such, we briefly discuss the solar activity cycle. Numerous spacecraft have been
launched to study this environment, providing a wealth of data. Several of these spacecraft
are discussed here, including the Advanced Composition Explorer which is extensively used
in this thesis.

2.1 Solar Wind Overview

Astronomical studies of near-Earth objects prior to the start of the space age gave hints
that there did exist some form of corpuscular radiation within interplanetary space. At
the very least, there seemed to be such material and dynamics at times of solar activity
(flares, in particular). As early as the 1700’s, it was suspected that aurora were linked
with solar activity in some fashion and, in particular, the periods of heightened sunspot
numbers. However, direct evidence for this link to the Sun was not obtained until Richard
Carrington’s landmark observation of a solar flare on September 1, 1859. This burst of
radiation was followed 18 hrs later by brilliant aurora and one of the strongest geomagnetic
storms ever recorded (Kivelson and Russell, 1995). This observation lent support to the
idea that charged material was ejected from the Sun during these active periods. In the
mid-1900s, it was observed that the orientation of cometary tails could be attributed to the
presence of a “solar wind” of particles emanating in all directions and at all times from
the Sun. In addition, it was observed that cometary tails could become disconnected by
some unknown means acting in interplanetary space. Not long after, Parker (1958) provided
the current theoretical understanding of the mechanisms producing this “wind” of charged
particles.

The earliest missions of the space age explored the very-near-Earth region now known as
the magnetosphere, where the Earth’s magnetic field dominates the structure and dynamics
of space. Several key early missions opened the door to interplanetary space. The Russian
spacecraft Luna 1 in 19591 and the American spacecraft Mariner 2 in 1962 (Neugebauer and
Snyder, 1962) provided the first measurements of an apparent supersonic flow of ions moving

1http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=1959-012A
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away from the Sun. This flow is now known as the solar wind. In 1960, Pioneer 5 (Coleman
et al., 1960) provided the first measurements of the IMF and confirmed the prediction of
Parker (1958, 1963) that the IMF was wound into a spiral pattern and rooted in the solar
photosphere.

Many missions have flown since. We have explored the high latitudes above the Sun and
reached the distant outer heliosphere where the solar wind meets the interstellar plasma. We
have found the solar wind to be quite variable, but never absent. Barnes (1979) characterizes
the low-speed and high-speed wind at 1AU, as well as, the variation of several parameters
with heliocentric distance R. Reproducing some of Table 1 from Barnes (1979):

Table 2.1: Partial Table 1 from Barnes (1979) showing typical solar wind properties at 1AU.

Measured Parameter Typical 1AU Value High-speed streams Variation with R
Ion Composition ∼ 96% H+ ∼ 96% H+ Constant

∼ 4% He2+ ∼ 4% He2+

Flow Velocity ∼ 400 km/s ∼ 750 km/s Constant
radially directed radially directed

Density ∼ 6 proton/cm3 ∼ 4 protons/cm3 ∝ R−2

Magnetic Field ∼ 5 × 10−5 G ?? radial
oriented in component ∝ R−2

ecliptic plane at
about 45◦ to azimuthal
radial direction component ∝ R−1

Proton Temperature ∼ 4–10 × 104 K ∼ 2 × 105 K ∝ R−a,2/7 ≤ a ≤ 4/3
Electron Temperature ∼ 10–20 × 104 K ∼ 105 K ∝ R−b,2/7 < b ≤ 4/3

Many of the values above have been further illuminated in more recent studies and are
pursued below. The Sun has been shown to be highly variable, but on long time scales highly
systematic passing through periods of greater or lesser activity. There is strong latitudinal
structure to the solar wind and numerous evolutionary developments in the outer heliosphere
as fast and slow wind collide. We discuss these topics in Section 2.2 and Chapter 3 as they
pertain to the central theme of this thesis.

2.2 The Solar Cycle

The solar cycle plays a minor role in the work to come, so we briefly discuss it now. The Sun
goes through an 11 yr cycle of activity from peak activity (solar maximum) to remarkably
quiet conditions (solar minimum). “Activity” and “quiet” refer largely to photospheric
dynamics where sunspots form, flares erupt, etc. Some activity, such as interplanetary
shocks reach out into interplanetary space and have a direct influence on in situ conditions.
Figure 2.1 shows a fairly typical image of the active Sun at solar maximum as observed
by the Solar and Heliospheric Observatory (SOHO) spacecraft. Figure 2.2 shows a typical
image of the Sun at solar minimum from the SOHO spacecraft. Notice the stark difference
in the amount of bright active regions between the two images. Both images are taken from
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Figure 2.1: Image of the Sun recorded by the SOHO spacecraft on January 20, 2000. The
image shows the Sun near solar maximum and a number of bright active regions are apparent.
The image was taken by the Extreme Ultraviolet Imaging Telescope (EIT) at a wavelength
of 171 Å.

Figure 2.2: Same as the image from Figure 2.1 but recorded on January 20, 2008. This
data is near solar minimum. Notice the absence of bright active regions as compared to
Figure 2.1.
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the SOHO website2.
During solar minimum, the Sun and solar wind are highly structured. Two large coronal

holes dominate the Sun’s photosphere and these holes are a source of high-speed winds seen
predominantly and most notably at high heliographic latitudes. These high-speed winds can
extend to low latitudes such that during solar minimum the near-ecliptic wind is a variation
between fast and slow-wind conditions. This produces Interaction Regions where the fast
wind impinges on the slow wind and compresses the flow. As there is little other solar activity
and these wind sources are long-lived, the interaction regions can be seen periodically each
solar rotation, making them Corotating Interaction Regions (CIRs).

During solar maximum the Sun and solar wind are disordered. Transient activity de-
fines the observations with many solar eruptions, flares, etc. The solar wind shows highly
transient behavior and the high-latitude wind is largely similar to the low-latitude wind.
Notably present during solar maximum are Coronal Mass Ejections (CMEs) which are large
eruptions of solar material that plow through the surrounding solar wind at high speeds.
These eruptions can create shocks in interplanetary space and drive geomagnetic activity,
such as the aurora discussed above, making solar maximum an active period throughout the
heliosphere.

The solar maximum phase is created by the reversal of the solar dynamo and its effects
on the solar photosphere and corona. As such, the solar magnetic field possesses a 22 yr cycle
spanning two 11 yr cycles in activity. In general, the Sun’s magnetic field is nearly dipolar,
reversing polarity every 11 yrs. The most “pure” dipolar structure is observed during solar
minimum and the structure becomes more complex as solar maximum approaches. Overall,
open magnetic flux dominates the polar regions of the Sun and extends to the edges of the
heliosphere, while the equatorial regions are dominated by closed magnetic loop structures
near the solar photosphere. In the hemisphere where magnetic field lines emanate from the
Sun, interplanetary space is dominated by outward directed field lines. Likewise, in the
hemisphere where field lines are directed towards the Sun, interplanetary space is dominated
by inward directed field lines. Further details of the Sun’s magnetic field structure are
discussed in the next chapter.

2.3 Heliospheric Missions

Many spacecraft have made direct measurements of the solar wind and heliospheric environ-
ment since the early 1960’s, providing a variety of in situ measurements at various positions.
Measurements are available ranging from the near-Earth environment of the magnetosphere
to the termination shock at the edge of the heliosphere. There are direct measurements as
close as 0.3AU from the Sun (and even closer in the near future with the launch of Solar
Probe). Many measurements are available in the ecliptic plane (in which the planets re-
volve around the Sun), while only four have ventured outside the ecliptic region: Ulysses,
Pioneer 11, and Voyagers 1 & 2. The latter moved to high northern and southern latitudes
only after completing their planetary encounters. Ulysses is fundamentally and by design a
high-latitude mission.

A multitude of missions, since the early days of space flight, have made measurements
in the near-Earth solar wind environment. The data from many of these missions has been

2http://sohowww.nascom.nasa.gov/
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merged into the National Space Science Data Center (NSSDC) Omni dataset3, first created
in the mid-1970’s, which provides a unique 30+ years of continuous data.

The Voyager 1 & 2 missions4, launched in 1977, provide solar wind measurements well into
the outer heliosphere. The Voyagers were more extensively instrumented than the Pioneer
10 & 11 spacecraft5, launched in 1972 and 1973 respectively. They followed the Pioneers
to Jupiter, where Pioneer 10 was redirected across the inner heliosphere. The Voyagers
followed Pioneer 11 to Saturn, where Pioneer 11 was directed out of the ecliptic. Voyager 1
was likewise directed out of the ecliptic after its encounter with Saturn, but in the opposite
latitudinal direction. Voyager 2 was the first spacecraft to reach Uranus and Neptune and,
was soon after, also redirected out of the ecliptic. The Pioneer 10 & 11 spacecraft died late
in the last century due to a lack of electrical power; however, the Voyagers have lived on and
provide us with the only in situ measurements of the termination region where the solar wind
becomes sub-Alfvénic near the edge of the heliosphere. These three missions (Pioneer 11,
Voyager 1, and Voyager 2) provide the only view of the high latitudes at large heliocentric
distance and only at modest latitudes ∼ 30 to 40◦.

The Ulysses spacecraft was launched in 1990 and following a close encounter with Jupiter
was swung by gravitational assist Sunward to pass over the Sun’s south pole (Wenzel et al.,
1992). It reached a highest latitude of 80◦ and completed 3 passes before losing power and
ceasing communication in June of 2009. Ulysses provided the first direct evidence of the
existence of a steady fast wind at high latitudes during solar minimum (McComas et al.,
1995).

2.4 The Advanced Composition Explorer

The analyses described in Chapters 6–9 of this thesis utilize data from the Advanced Compo-
sition Explorer (ACE) spacecraft (Stone et al., 1998). The ACE spacecraft orbits around the
L1 Lagrangian point of the Sun-Earth system. This selection of orbit means the spacecraft
remains at an approximately stationary position between the Sun and the Earth relative to
the motion of the two bodies. The L1 point is located ∼ 1.5× 106 km towards the Sun from
the Earth which puts the spacecraft approximately 1AU (1.5× 108 km) away from the Sun.

The spacecraft was launched in 1997 and data collection began on January 21, 1998.
Magnetic field data collection began just a few hours after launch. The ACE data set,
therefore, provides nearly continuous coverage of the near-Earth solar wind environment for
more than 13 years. This data spans a variety of solar wind conditions during both solar
maximum and solar minimum. The spacecraft continues to collect data as of today.

The primary objective of the ACE spacecraft is to measure the elemental and ion compo-
sition of energetic particles from a variety of sources (i.e. Solar Energetic Particles, Anoma-
lous Cosmic Rays, and Galactic Cosmic Rays), as well as, the composition of the solar wind
plasma. The position of the spacecraft between the Sun and the Earth also makes ACE an
ideal platform for monitoring the solar wind for space weather purposes. As such, the space-
craft provides real-time in situ measurements of the solar wind plasma and interplanetary
magnetic field. Nearly continuous plasma and magnetic field measurements also makes ACE
data ideal for solar wind turbulence studies. Nine scientific instruments designed to achieve

3http://omniweb.gsfc.nasa.gov/ow.html
4http://voyager.jpl.nasa.gov/
5http://www.nasa.gov/mission pages/pioneer/
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these objectives are carried on ACE.
The two instruments most pertinent to turbulence studies, and utilized in the analyses

presented in this thesis, are the Solar Wind Electron Proton Alpha Monitor (SWEPAM) and
the ACE Magnetic Fields Experiment (MAG) (McComas et al., 1998; Smith et al., 1998).
The SWEPAM instrument is the refurbished spare for the Solar Wind Over the Poles of
the Sun (SWOOPS) instrument from the Ulysses spacecraft. It consists of two electrostatic
analyzers, one for ions and the other for electrons, which make 3D measurements of protons,
electrons, and alpha particles every 64 s. The MAG instrument is the refurbished spare of
the Magnetic Field Investigation (MFI) instrument on the WIND spacecraft consisting of
two triads of fluxgate magnetometers. Each triad of fluxgates is arranged in an orthogonal
fashion along three axes and is capable of producing 24 vector measurements of the magnetic
field every second.

SWEPAM plasma and MAG magnetic field data are provided in a merged dataset with
64 s resolution. The data is available online to all at the ACE Science Center6. The cadence
of the data is limited by the measurement rate of the SWEPAM instrument. Data from
the MAG instrument are averaged over the 64 s interval of the SWEPAM measurement. In
this dataset, relevant plasma data include the proton number density, proton temperature,
proton speed, and the proton velocity components in RTN coordinates. Relevant magnetic
field data include the magnetic field strength and components of the magnetic field in RTN
coordinates.

The RTN coordinate system is defined such that R̂ is the direction radially away from
the Sun, T̂ is coplanar with the Sun’s rotational equator and pointed in the direction of
the Sun’s rotation, and N̂ is orthogonal to both R̂ and T̂ so that R̂ × T̂ = N̂. The RTN
coordinate system is used extensively in this thesis.

6http://www.srl.caltech.edu/ACE/ASC/
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Chapter 3

Solar Wind Structures and Transients

As we allude to above, the solar wind is highly variable in many parameters. It has a single
source, the Sun, but many smaller, localized sources on the Sun that produce different forms
of wind (variable wind speed, density, magnetic field intensity, composition, etc.). This
chapter briefly describes some of the in situ dynamics that are seen to be active in the solar
wind. We describe them so that they may either be used or discarded as needed in the
studies to come.

3.1 Coronal Mass Ejections

Many transient structures are present in the solar wind and several of these exhibit condi-
tions that are unsuited for the analyses described in Chapters 7–9. One such structure is
the Interplanetary Coronal Mass Ejection (ICME). ICMEs form as bubble-like disturbances
in the solar corona known as Coronal Mass Ejections (CMEs). When these disturbances
magnetically detach from the Sun, creating a closed magnetic loop, they are ejected into
interplanetary space and become known as ICMEs. These structures have strong magnetic
signatures, often including twisted magnetic field lines known as flux ropes (or magnetic
clouds in interplanetary space) (Moldwin et al., 2009).

ICMEs are observed frequently in spacecraft data; occurring more frequently at solar
maximum and less frequently at solar minimum. Figure 3.1 shows an example of two con-
secutive ICMEs observed by the ACE spacecraft during solar maximum. These two struc-
tures are seen beginning on days 274 and 277 of the plot. Rotations in the magnetic field
indicating flux ropes can be seen in the second panel of the figure.

ICMEs travel at speeds that are often much larger than the surrounding solar wind
speed and, as such, plow through the slower moving plasma creating shocks (see next section)
upstream of the disturbance. One such shock is seen in Figure 3.1 on day 277 and is discussed
in the next section. The shock associated with the ICME on day 274 is missing density data,
which makes it difficult to pinpoint. The variability of the magnetic field and compressive
nature of the associated shocks, make these objects difficult to include in the turbulence
formalism described in this thesis.
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Figure 3.1: (from the top) Magnetic field intensity [nT], magnetic latitude angle [deg], mag-
netic longitude angle [deg], rms magnetic vector fluctuation based on a 16 s mean [nT], solar
wind speed [km/s], proton density [#/cm3], proton temperature [K], alpha particle density

[Nα/Np], proton plasma beta (β = 2µ0NpkBTp/B
2), Alfvén speed

(

VA = B0/
√

(µ0ρ)
)

[km/s],

and Mach number for the flow (Vp/VA) as recorded by the ACE spacecraft from days 272
through 278 in year 2000. Note two ICMEs from day 274 to 275.5 and from day 277 until
later than the plot shows. Note interplanetary shock ahead of second ICME at the start
of day 277. An earlier shock is apparent shortly after the start of day 274, but the shock
lacks density and temperature information. Note strong rotations of the IMF (flux ropes)
within both ICMEs with the second particularly evident. Last, note extreme variability of
all parameters.
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Figure 3.2: Same as Figure 3.1 plotted for day 277 of year 2000. Vertical lines mark the
shock preceding the ICME on day 277 of Figure 3.1. Note sharp jumps in magnetic field
strength, solar wind speed, proton density, and proton temperature indicating the presence
of a shock.
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Figure 3.3: Same as Figure 3.1 but plotting the time period spanning days 57–63 of year
2008. Note the simple structure of the solar wind and associated thermal ion data. This
is typical of solar wind conditions during solar minimum. Note CIR from days 58.5 until
61.25 with a pile-up of magnetic field at the leading edge. Note, too, that the IMF is highly
variable about a well-defined mean throughout much of the period despite the quiet structure
of the wind.
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3.2 Shocks

Shocks are another feature often present in the solar wind. The solar wind travels at velocities
greater than the sound speed and Alfvén speed within the medium and is susceptible to
discontinuities in the flow speed. This process is similar to shock formation in air when an
airplane breaks the sound barrier. The Alfvén speed refers to the propagation speed of one
of the dominant wave modes in the solar wind and is further discussed in Section 3.6.

In the solar wind, shocks are characterized by abrupt changes in the magnetic field
strength, velocity, density, and temperature. As discussed in the previous section, one
method of shock formation occurs when fast moving ICMEs push through the ambient
solar wind. The ACE spacecraft observes many of these shocks. Figure 3.2 shows the shock
produced by the second ICME in Figure 3.1. A vertical line is placed to show the ap-
proximate position of the shock on the plot. Note the discontinuities present in the above
mentioned parameters. This shock is noted by the ACE Science Center1, who characterize
it as a forward shock meaning it is propagating away from the Sun. The velocity of shock
propagation in the spacecraft frame is computed to be 347 ± 47 km/s, the ratio of densities
across the shock is 2.1 ± 0.1, the ratio of the magnetic field strengths across the shock is
2.1± 0.2, and the Alfvén mach number is 2.6± 0.6. These values are typical of those seen at
1AU. In the analyses presented here, we typically remove these shocks along with the driving
CMEs because they introduce compressible effects not included in the theory we describe in
Chapter 5.

Another class of objects that can lead to shock formation are Corotationg Interaction
Regions (CIRs). As we briefly describe in Section 2.2, long lived sources on the Sun produce
solar wind streams of a variety of speeds, both slow and fast. The rotation of the Sun can
cause fast wind streams to come up behind slow wind streams and plow through the slower
moving plasma. This process can lead to compression of the plasma between the slow and
fast moving streams. If the velocity difference is great enough (i.e greater than the Alfvén
speed), a shock can be produced. Shock formation due to CIRs typically occurs beyond 1AU;
however, the steepening of the velocity, magnetic field, etc., leading to the shock formation,
can be seen at 1AU (Kivelson and Russell, 1995). Figure 3.3 shows an example of a CIR
recorded by ACE from days 58 to 61 of 2008. This plot also provides a good example of
typical solar wind conditions at solar minimum.

The reverse situation, where a slow wind stream is behind a fast wind stream, is also seen
in the solar wind. In this situation, the fast wind pulls away from the slow wind creating
a region known as a rarefaction. Rarefactions are typically characterized by lower densities
and cooler temperatures due to the expansion of the plasma.

Both the compressional CIRs and rarefaction intervals are further discussed in the anal-
ysis of Chapter 9. In particular, the effects that compression intervals can have on that
analysis are discussed.

3.3 The Interplanetary Magnetic Field

Due to dynamic processes collectively known as the solar dynamo, the Sun produces a
magnetic field. As discussed in the previous chapter, this magnetic field consists of both
open magnetic field lines (which extend into the outer heliosphere) and closed magnetic field

1http://www.ssg.sr.unh.edu/mag/ace/ACElists/obs list.html
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lines (which are doubly connected to the Sun); the overall structure of which, varies over
the course of the solar cycle. However, throughout the solar cycle open solar magnetic flux
permeates interplanetary space. This is what is known as the Interplanetary Magnetic Field.

The IMF is coupled to the solar wind plasma due to the high conductivity of the system.
The mathematical description and consequences of this coupling are described in greater
detail in Sections 3.4–3.6. In particular, the magnetic field is said to be “frozen-in” to the
plasma, or in other words the magnetic field moves with the solar wind (see Section 3.5). As
a result, a variety of transient phenomena, including the CMEs, CIRs, and shocks discussed
previously, induce fluctuations in the magnetic field. Note the variability of the field in the
top four panels of Figures 3.1 and 3.3. The closed magnetic loop structures of ICMEs and
discontinuities of shocks are also readily evident in observations and, in their own right,
represent a significant variability in the IMF.

The main focus of this thesis deals with the evolution of both the IMF fluctuations and
the coupled plasma fluctuations in the form of turbulence. While the transient phenomena
drive the fluctuations we study herein, they themselves represent a contamination to the
data that is outside the theories we employ. As a result, we aim to remove these in our
analyses.

3.4 The MHD Equations

As discussed, the solar wind is a mass of ionized gas known as plasma which flows radially
from the Sun and is permeated by a large scale magnetic field. The dynamics of the solar
wind can be viewed in several contexts. The most straight forward of these views, which
lends insight into the behavior at the smallest scales in the plasma, is to view the solar
wind as a collection of charged particles moving in the presence of a magnetic field. The
dominant force governing the dynamics of this system is the Lorentz force, which acts on
a moving charged particle in the direction perpendicular to both the particle’s motion and
the direction of the magnetic field. If the particle’s motion has some angle to the magnetic
field, this force results in a spiraling motion of the particle along the magnetic field line.
The radius rc of the spiral, known as the gyro-radius or cyclotron radius, is given by the
relationship (Kivelson and Russell, 1995):

rc =
mv⊥
qB

(3.1)

where m is the mass of a particle with charge q, v⊥ is the component of the particles velocity
in the direction perpendicular to the magnetic field, and B is the magnitude of the magnetic
field. The solar wind is predominantly made up of protons and electrons with typical gyro-
radii of ∼ 50–100 km and ∼ 1–2 km respectively (Barnes, 1979). Further effects which follow
from this view of plasma dynamics and relate to the dissipation of turbulent energy are
discussed in Section 4.4.

A second description of plasma dynamics, which is valid for scales greater than the gyro-
radii, where we are only concerned with the bulk motions of the plasma, can be developed if
we consider the plasma to be a fluid. In hydrodynamics, an expression describing the motion
of a fluid (i.e. water, air in the limit where velocities are much less than the sound speed,
etc.) can be constructed by considering Newton’s second law and relating the momentum
of the particles within the fluid to the forces acting on the fluid as a whole. Under the
assumption of incompressibility (or in other words, a constant density within an arbitrary
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volume moving with the fluid), the resulting momentum evolution is given by the Navier-
Stokes (N-S) equation:

∂v(x, t)

∂t
+ (v · ∇)v = −1

ρ
∇P + ν∇2v (3.2)

where v is the velocity field, ρ is the mass density, P is the fluid pressure, ν is the kinematic
viscosity, and the incompressibility condition is given by ∇·v = 0 (Frisch, 1995; Pope, 2000).

For a fluid consisting of charged ions and electrons, the presence of a magnetic field
plays a significant role in governing the dynamics of the system. As such, Eq. (3.2) must be
modified using Maxwell’s equations, Ohm’s law, and the Lorentz force. Analogous to the
incompressible N-S equation, the incompressible magnetohydrodynamic equations, governing
the large-scale motion of a plasma in a magnetic field, are given by (Kivelson and Russell,
1995; Smith, 2009):

∂v(x, t)

∂t
+ (v · ∇)v = −1

ρ
∇P +

1

µ0ρ
(∇× B) ×B + ν∇2v (3.3)

∂B(x, t)

∂t
= ∇× (v ×B) + η∇2B (3.4)

∇×B = µ0j (3.5)

∇ ·B = 0 (3.6)

∇ · v = 0 (3.7)

where B is the magnetic field, j is the current density, and η is the magnetic diffusivity. The
magnetic diffusivity is given by η = 1/ (µ0σ) where µ0 is the permeability of free space and σ
is the electrical conductivity. Notice that the complete N-S equation is imbedded in Eq. (3.3).
This is the modified momentum equation with the additional term (µ0ρ)−1 (∇×B) × B,
which describes the effect of the Lorentz force on the system. A slightly deeper understand-
ing of how the magnetic field acts on the plasma is obtained if we rewrite this term as
(µ0ρ)−1 (∇× B)×B = (µ0ρ)−1 (B · ∇)B−ρ−1∇B2/(2µ0), where the first term corresponds
to a “magnetic tension” force acting on the plasma and the second term can be related to a
“magnetic pressure” imposed on the system.

Just as the large-scale magnetic field influences the motion of the plasma, the moving
charged particles also influence the magnetic field. As such, Eq. (3.4), (3.5) and (3.6) are
all derived from Maxwell’s equations and are used to describe the evolution of the B field.
Eq. (3.6) is the familiar expression stating that there are no magnetic monopoles and Eq. (3.5)
is simply Ampére’s law, where the displacement current has been taken to be negligible under
the MHD assumptions. Eq. (3.4), known as the induction equation, explicitly describes the
time evolution of the magnetic field and is a re-expression of Faraday’s law, where the electric
field E has been computed using Ohm’s law and Eq. (3.5) (Kivelson and Russell, 1995;
Rempel, 2009). Finally, Eq. (3.7) is again the incompressibility condition. Compressible
MHD equations are equally derivable as are multi-fluid MHD equations, treating ions and
electrons as separate fluids, but the above are the simplest form and the logical starting
point for the work developed here.

Further symmetry between hydrodynamics and MHD can be seen if we express Eq. (3.3)
and (3.4) in terms of the Elsässer variables Z± = v ± B/

√
µ0ρ (Elsässer, 1950):

∂Z±

∂t
+
(

Z∓ · ∇
)

Z± = −1

ρ
∇PMHD +

(

ν + η

2

)

∇2Z± (3.8)
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Figure 3.4: Image illustrating the Parker spiral structure of the IMF in 3 dimensions. Arrows
show the path of outward directed magnetic field lines along the contour. In this thesis, we
consider the 2 dimensional cut of this structure in the ecliptic plane. Figure reproduced from
Ness and Wilcox (1965).

where PMHD is the sum of the fluid pressure and the magnetic pressure, such that PMHD =
P + B2

2µ0

. Eq. (3.8) assumes η = ν. Otherwise, the more general form is less compact. We

also note that Eq. (3.6) and (3.7) lead to the incompressibility of the Elss̈ser variables (i.e
∇ · Z± = 0). In this formulation, both the evolution of the velocity and magnetic field
can be described using two equations, which are of the same form as the N-S equation. The
Elsässer variables can be thought of as corresponding to “Alfvén” waves, which represent one
of the dominant modes of fluctuation in MHD and will be further discussed in Section 3.6.
However, this is not the only interpretation of the Elsässer variables and this formulation of
the MHD equations is general regardless of the presence of Alfvén waves.

3.5 The Parker Spiral

The time varying structures of the IMF mentioned in Section 3.3 are superimposed upon a
large-scale relatively time invariant structure to the field. The form of the large-scale IMF
structure is derived in Parker (1958). Due to the rotation of the Sun, the field takes on the
form of an Archimedean spiral (often referred to as the Parker spiral in this context) in the
ecliptic plane. Because the Sun rotates differentially, with the solar equator rotating faster
than the poles, the three-dimensional structure of the IMF takes on a more complex form
often referred to as a “ballerina skirt.” Figure 3.4 illustrates this structure. In this section,
we will focus on the two-dimensional structure in the ecliptic plane, as it is most directly
relevant to the studies described in this thesis.

To understand this structure, we employ a useful simplification to the MHD equations
known as Ideal MHD. In this approximation, it is assumed that the electrical conductivity
σ of the plasma is infinite. In the solar wind, while the conductivity is certainly not infinite,
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it is very high and the Ideal MHD approximation can lend some insight into an interesting
feature of MHD plasma flows.

Recall that the magnetic diffusivity seen in the induction equation (see Eq. (3.4)) is
related to σ−1. As such, under Ideal MHD the induction equation becomes (Kivelson and
Russell, 1995; Rempel, 2009):

∂B

∂t
= ∇× (v ×B) (3.9)

From this equation, it can be shown that the magnetic flux through an arbitrary surface
moving with the plasma is unchanging in time. It is, therefore, said that the magnetic field
moves with the plasma in an Ideal MHD fluid or in other words, the field is “frozen-in” to
the plasma.

Let us now consider a time invariant magnetic field and solar wind plasma flow emanating
radially from the Sun. We take the plasma flow to have a constant radial velocity VSW with
respect to the heliocentric distance. In the reference frame rotating with the Sun, the plasma
flow in the ecliptic plane has an apparent velocity in polar coordinates of vR = VSW in the
R-direction and vφ = −ΩR in the φ-direction, where Ω is the angular rotation rate of the Sun
at its equator and R is the radial distance from the Sun. From the frozen-in-field condition
described above, the two magnetic field components must be related in a similar fashion.
We can, therefore, write (Kivelson and Russell, 1995):

BR

Bφ
=

vR

vφ
= −VSW

ΩR
(3.10)

The overall shape of any given magnetic field line can be determined by rewriting
Eq. (3.10) in the following manner:

dR

dφ
= −VSW

Ω
(3.11)

where vR has been rewritten as dR
dt

and vφ has been rewritten as Rdφ
dt

. Since VSW and Ω
are constants, the obvious solution to this differential equation, with boundary conditions
applied, is the equation of an Archimedean spiral:

R − R⊙ = −VSW

Ω
(φ − φ0) (3.12)

where R⊙ is the solar radius and φ0 is the angular position of a particular magnetic field line
at the surface of the Sun.

We can also determine the two components of the equatorial magnetic field. The fact
that the magnetic flux from the Sun is constant, leads to the following equation for the radial
magnetic field:

BR = B
(

R⊙

R

)2

(3.13)

By combining this equation for the radial field strength with the frozen-in-field equation
given by Eq. (3.10), we find that the longitudinal component to the field is given by:

Bφ = −B
ΩR2

⊙

VSWR
(3.14)

Note, the radial magnetic field strength varies as R−2, while the longitudinal component
varies as R−1.
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From Eq. (3.13) and (3.14), the angle between the magnetic field direction and the radial
direction, denoted by ΘBR, in the ecliptic plane is given by:

tan ΘBR =
Bφ

BR

= − ΩR

VSW

(3.15)

The Sun has a sidereal rotation period at the equator of ∼25 days, with a synodic rotation
period as viewed from the Earth (or the ACE spacecraft) of ∼27 days. If we take the typical
solar wind speed to be ∼400 km/s and use the synodic rotation period of the Sun, this leads
to a nominal angle between magnetic field and the radial direction of ∼ 45◦ as viewed by
the ACE spacecraft or an observer on Earth at 1AU. However, it is important to remember
that as discussed in Section 3.3, there is significant variation in the IMF and a whole range
of angles can be measured depending on the interval of solar wind data.

3.6 Waves in Interplanetary Space

The MHD equations are capable of supporting a number of different wave modes, including
slow mode waves, fast mode waves, and Alfvén waves (Barnes, 1979). Slow mode waves
are highly compressive and generally damped in the solar wind. Observations of slow mode
waves in the solar wind are, at the least, rare. Fast mode waves are comparable in many
ways to Alfvén waves, but are compressive and weakly damped with opposing polarization.
Of particular interest in the study of MHD turbulence in the solar wind, is the Alfvén
mode, which features magnetic and velocity fluctuations that are transverse to the mean
magnetic field. Alfvén waves exhibit no density fluctuations in first-order theory. They are
non-dispersive (propagate at a fixed speed) and bear a strong resemblance to a broad class
of solar wind observations.

We can begin to glean some insight into this particular wave mode by further analysis
of the MHD equations. In general, wave behavior is caused by the leading order, linear,
and non-dissipative dynamics of a system. As such, we consider the linearized versions of
Eq. (3.3) and (3.4) by assuming:

B(x, t) = B0 + εb1(x, t) (3.16)

v(x, t) = εv1(x, t) (3.17)

where B0 is the spatially and temporally constant average magnetic field, b1 is the first
order perturbation to the magnetic field such that the average of b1 is zero, and v1 is the
first order perturbation on the velocity field such that the average of v1 is zero. ε is simply
a parameter characterizing the “order” (i.e. first order, second order, etc.) of the terms.
The fact there is no constant velocity term V0 in Eq. (3.17) indicates we are considering
the frame of reference moving with the plasma. This can be done without loss of generality.
Note, higher order perturbations to the B and v fields have been dropped.

By substituting Eq. (3.16) and (3.17) into Eq. (3.3) and (3.4), dropping any terms that
are second order or higher, and neglecting the two dissipative terms ν∇2v and η∇2B, we
are left with the linearized MHD equations:

∂v1

∂t
=

1

µ0ρ
(∇× b1) × B0 (3.18)

∂b1

∂t
= ∇× (v1 × B0) (3.19)
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While not demonstrated here due to the complexity of the problem, it can be shown that
Eq. (3.18) and (3.19) can be combined to produce a wave equation. We, therefore, assume
wave solutions to the set of coupled linear equations:

v1 = v′
1e

i(k·x−ωt) (3.20)

b1 = b′
1e

i(k·x−ωt) (3.21)

where k is the wave vector, related to the wave length and direction of propagation, and ω
is the angular frequency of the wave. From Eq. (3.6) and (3.7), we see that k · v′

1 = 0 and
k · b′

1 = 0.
We impose the conditions v′

1 ·B0 = 0 and b′
1 ·B0 = 0 to limit the analysis to transverse

fluctuations. By inserting the wave solutions given by Eq. (3.20) and (3.21) into Eq. (3.18)
and (3.19), we can solve for the Alfvén wave dispersion relation:

ω =
|k · B0|√

µ0ρ
(3.22)

The group velocity of a wave is given by ∂ω
∂k

, so we can write the Alfvén speed as:

VA =
B0√
µ0ρ

(3.23)

We can further determine the relationship between v1 and b1 in an Alfvén wave, by utilizing
Eq. (3.16), (3.17), and (3.22):

v1 = − 1√
µ0ρ

(k · B0)

|k · B0|
b1 = ± b1√

µ0ρ
(3.24)

From this expression, we see that not only are Alfvénic fluctuations transverse to B0, but v1

and b1 also fluctuate along the same axis. Note v1 = +b1/
√

µ0ρ corresponds to waves prop-
agating anti-parallel to B0 and v1 = −b1/

√
µ0ρ corresponds to parallel wave propagation.

This relationship between velocity and magnetic field fluctuations provides the motivation
for the Elsässer variable formulation of the MHD equations seen in Eq. (3.8). (Note that
the Alfvén speed is often expressed in CGS units as VA = B0/

√
4πρ. Likewise, the Elsässer

variables can be expressed in CGS units as Z± = v ± B/
√

4πρ.)
Observationally, the presence of wave like behavior in the interplanetary solar wind

plasma has been known since the 1960’s. From the earliest in situ measurements of in-
terplanetary space, it was noted that small-scale irregular behavior is present in the solar
wind. One explanation for this irregularity is the presence of the various MHD wave modes.
Two major studies (Coleman, 1966; Belcher and Davis, 1971), attempt to analyze the ob-
served fluctuations and determine the general properties of the wave modes present in the
solar wind. In the study of Coleman (1966), it is determined that interplanetary solar wind
fluctuations can be attributed to a superposition of randomly polarized and predominantly
outward propagating Alfvén or fast mode waves. The presence of slow mode waves is not
determined in this study. In a more in depth study, Belcher and Davis (1971) concluded that
the small-scale fluctuations of the solar wind are largely made up of outward propagating
Alfvén waves and that the “purest” instances of these waves are seen in fast solar wind
streams.

Figure 3.5 shows an example of the Belcher and Davis (1971) results. Solar wind magnetic
field and plasma velocity observations are plotted over a 24 hr period. The mean magnetic
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Figure 3.5: 24 hrs of magnetic field and plasma data from Mariner 5. The top six curves
show the three components of the magnetic field and plasma velocity, while the bottom two
curves show the magnetic field strength and proton number density. Note the strong positive
correlation between velocity and magnetic field fluctuations, which demonstrate the presence
of outward propagating Alfvén waves. Figure reproduced from Belcher and Davis (1971).

field over this interval is directed inward (towards the Sun) along the Parker spiral. Notice
the high degree of positive correlation between the velocity and magnetic field (meaning
fluctuations in v follow fluctuations in b or vise versa) for all three components of the two
fields. This is consistent with the above definition of Alfvén waves. The scaling ratio used for
plotting the velocity and magnetic field measurements is in accordance with Eq. (3.24) with
an additional correction term accounting for anisotropies seen in the solar wind. Remember
that positive correlation between v and b corresponds to Alfvén waves propagating anti-
parallel to the magnetic field. Since the mean magnetic field in this interval is directed
inward, the fluctuations seen in Figure 3.5 are propagating outward (away from the Sun)
along the Parker spiral.

The wave description of interplanetary fluctuations is not the whole story. Coleman
(1968) finds that the power spectra (see Section 4.1) of interplanetary fluctuations follows
a reproducible power law scaling over a range of frequencies from ∼ 1.16 × 10−4 Hz to
∼ 1.35×10−2 Hz. This indicates that some “universal” process must be shaping the spectrum.
Coleman (1968) proposes turbulence, which offers several predictions for universal power
spectra scaling laws (see Section 4.3), can account for the observed interplanetary spectral
form. In particular, Coleman (1968) suggests a turbulent process similar to that proposed
by Kraichnan (1965), in which oppositely propagating Alfvén waves interact non-linearly,
can account for the observed spectra.

It is important to note the key difference between the wave phenomenon and turbulence.
Waves represent stable propagating structures in the MHD fluid, while turbulence represents
an inherently chaotic and unstable process in which fluctuations are created and destroyed
through the non-linear terms in the MHD equations.
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Figure 3.6: Fits of the average proton temperature measured by the Helios spacecraft as a
function of distance from the Sun. Separate curves correspond to 100 km/s intervals in solar
wind speed between 300 and 900 km/s. The region of the plot outside of 0.3AU comes from
actual Helios measurements, while the region inside of 0.3AU is simply an extrapolation to a
typical solar corona temperature of 2×106 K. The region inside of 0.3AU is not pertinent to
our discussion. When corrected for the continued acceleration of slow speed winds between
0.3 and 1AU, all wind speed intervals experience a shallower cooling (∼ R−0.9) than the
R−4/3 prediction of adiabatic expansion. Figure reproduced from Marsch (1991).

3.7 Solar Wind Heating

The simplest prediction for the temperature dependence of the solar wind as a function of
heliocentric distance R is that it experiences an adiabatic cooling of the form R−4/3 as the
plasma expands into the heliosphere. Numerous spacecraft provide measurements of this
radial temperature dependence, including the Voyager spacecraft in the outer heliosphere
(Richardson et al., 1995; Richardson and Smith, 2003) and the Helios spacecraft in the inner
heliosphere (Totten et al., 1995; Vasquez et al., 2007). These measurements show the solar
wind cools at a rate slower than is expected by adiabatic expansion. This fact suggests
additional heating (or in other words energy input) must be supplied to the plasma as it
expands from the Sun.

Helios measurements, especially with an important correction for wind acceleration, show
the radial component of the proton temperature TP for all streams of various speeds follows
an R−0.9±0.1 form near 1AU (Totten et al., 1995). This is considerably shallower than the
adiabatic prediction of R−4/3. Figure 3.6 shows fits of the average proton temperature as a
function of distance from the Sun. The pertinent interval is between 0.3 and 1AU, where
data was actually measured by the Helios spacecraft. The values closer to the Sun than
0.3AU are simply extrapolations to a common solar corona temperature. The gradients of
these curves are related to the average local heating rate of solar wind protons. Verma et al.
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(1995) and Vasquez et al. (2007) find the proton heating rate can be evaluated assuming an
isotropic thermal distribution. One complication in the analysis is that slow winds continue
to accelerate between 0.3 and 1AU and this needs to be taken into account when comparing
points on the figure. In particular, Vasquez et al. (2007) give an expression for the proton
heating rate per unit mass at 1AU once the correction for slow wind conditions is made:

ǫheat = 3.6 × 10−5TP VSW [J/(kg s)] (3.25)

where VSW is the solar wind speed in km/s and TP is in units of Kelvin. This expression is
based on an R−0.9 radial dependence of TP .

One possible source for this energy input is turbulence, which, at small scales, dissipates
energy into heat. One of the main objectives of the analyses presented in Chapter 7 is
determining if there is sufficient turbulent energy to account for this heating. In Chapters 7–
9, we make use of Eq. (3.25) to compare energy cascade rates at 1AU to proton heating
rates.
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Chapter 4

Solar Wind Turbulence

In this chapter, we explore the general concepts of turbulence theory including the existence
of multiple “ranges” where different dynamics dominate the flow. We explore the obser-
vations that help support the assertion that the interplanetary medium is fundamentally
turbulent in the sense of hydrodynamics with magneto-dynamic additions that we describe
using magnetohydrodynamics.

4.1 Interplanetary Power Spectra

The Sun, and particularly the solar atmosphere, is a dynamic environment which evolves
over a broad range of length and time-scales. As discussed above, there is a 22 yr solar
cycle associated with the solar dipole magnetic field. In terms of solar activity, this can be
divided into two 11 yr cycles, each possessing a solar activity minimum and maximum. At
spatial scales on the order of the Sun’s radius (∼ 7 × 105 km), solar oscillations (such as P-
mode, G-mode, etc.) propagate through the solar interior (Zirker, 2003). These large-scale
solar oscillation modes propagate into the depths of the Sun and are used in helioseismology
studies, which probe the solar interior. At smaller scales, convective motions in the outer
layers of the Sun cover the solar surface with supergranules on the order of ∼ 3 × 104 km in
diameter and granules on the order of ∼ 500 km in diameter with spicules showing movement
and vibration along their borders (Kivelson and Russell, 1995). Reconnection causes abrupt
topology changes for the magnetic field, flares, and the release of Coronal Mass Ejections.
Everywhere and at all scales observed so far, there is dynamics on the Sun.

As discussed in Chapter 3, magnetic field lines lead out from the solar corona and are
tied to the solar wind plasma, giving rise to the large scale structure of the interplanetary
medium. However, both the solar wind and the imbedded magnetic field are far from steady.
Magnetic field lines are rooted to the photosphere where dynamics on the Sun lead to “foot
point motion” generating waves that propagate along the magnetic field lines, similar to
waves on a string, and out into the interplanetary medium. The solar wind itself is also
variable with “fast” and “slow” winds arising from various sources on the Sun. Large-scale
ejecta (ICMEs) move through the solar wind, providing an added source of energy as the
ambient plasma is forced to flow into or around the transient. Shocks inject energy into
the flow in a similar manner. Within the solar wind, fluctuations in the ambient flow and
magnetic field exist at all temporal and spatial scales.

Turbulence offers a method by which the energy input by these solar sources can move
across scales and provide a mechanism for heating the solar wind. In order to study this
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Figure 4.1: A sketch of turbulence forming behind a wire grid placed in a wind tunnel.
Large-scale, energy-containing eddies form directly upstream of the grid. The scale of these
eddies is on the order of the grid spacing. Through non-linear interactions the large-scale
eddies break down into smaller eddies, “cascading” energy to smaller scales.

process, one needs a way of resolving the dynamics of solar wind fluctuations and under-
standing the extent to which an observation is the direct result of the solar input vs. in situ
processes that remake the energy into different forms. Spectral analysis, in which the power
(and thus the energy content) in each of the various spatial/temporal scales is determined,
is one common way of characterizing the distribution of energy in solar wind measurements.
Alone, the power spectrum says nothing about the underlying dynamics of the fluctuations.
However, turbulence theory attempts to better understand the processes that move energy
from one scale to another and evolve the spectrum into the observed form. Fortunately,
several well-supported theories of “universal” dynamical processes lead to predictions for
spectral forms that are observed in the solar wind.

4.2 Energy-Containing Range

We can divide the interplanetary spectrum into 3 ranges based on the terminology of tradi-
tional hydrodynamics: The energy-containing range, the inertial range, and the dissipation
range. The energy-containing range contains large-scale dynamical objects that directly re-
flect their generation mechanism without additional in situ processing. To take an example
from hydrodynamics, consider a wire grid placed in a wind tunnel. A sketch of this system
is provided in Figure 4.1. Directly down stream of the grid, shear forces between the grid
and the flow produce vortices (eddies) that are indicative of the scale size of the wire mesh.
These are the turbulent structures of the energy containing range and they possess a strong
correlation (memory) of the manner in which they were generated. As time progresses, non-
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linear interactions between the eddies cause a breakdown of the large-scale energy containing
structures and produce smaller eddies, which in turn interact to produce smaller eddies, until
eddy size is sufficiently small that viscosity leads to dissipation. This is the concept called
“cascade” in turbulence theory (Frisch, 1995).

The mechanisms behind the cascade process can be seen if we consider the N-S equation,
which governs the dynamics of a hydrodynamic fluid flow. Although shown in the previous
chapter, we again remind the reader of this important equation:

∂v(x, t)

∂t
+ (v · ∇)v = −1

ρ
∇P + ν∇2v (4.1)

where v is the velocity field in the fluid, ρ is the mass density, P is the pressure, and ν is
the kinematic viscosity. Recall, the incompressibility of the flow is given by ∇ · v = 0.

The dominant fluctuation mode in incompressible hydrodynamic flows is the vorticity or
eddy-like structure. We, therefore, rewrite the N-S equation in terms of the vorticity defined
as ω = ∇× v by taking the curl of Eq. (4.1):

∂ω(x, t)

∂t
= ∇× (v × ω) + ν∇2ω. (4.2)

For simplicity, we limit our discussion to a two-dimensional flow so that ω is exclusively in
the third direction. By invoking the incompressibility of the flow and taking note that ω is
always orthogonal to the 2D flow, we can rewrite the first term on the r.h.s. of Eq. (4.2) as
∇× (v × ω) = v ·∇ω. This gives the term responsible for the advection of eddies and is the
leading non-linear interaction term in the N-S equation. Two key conclusions can be drawn
from this term: 1) if a “small” eddy interacts with a larger eddy (i.e. the fields are arranged
in such a way that small spatial gradients are applied), than the “small” eddy will simply
be circulated around the field of the first. However, 2) if the two interacting eddies are of
comparable scale, then strong gradients will be placed across the interacting eddies resulting
in the distortion and eventual “shredding” into smaller eddies (Kolmogorov, 1941a). Frisch
(1995) and Smith (2009) provide reviews of this argument. It is this process which leads to
the cascade of energy mentioned above and allows interacting vortices to destroy each other,
driving turbulence at other scales.

It is assumed that MHD fluctuations undergo a similar process. However, it is an im-
portant observation that the incompressible MHD equations in three dimensions (see Sec-
tion 3.4) can support additional types of fluctuations aside from eddies, such as the Alfvén
waves discussed in Section 3.6. We, therefore, postulate that the large-scale transient ob-
jects discussed in the previous section, which move through the solar wind so as to create a
clear and undeniable interaction with the background plasma, are capable of providing an
energy source to drive turbulence and thus make up the energy containing range of MHD
turbulence.

We can begin to express this non-linear driving of turbulence by looking at the evolution
of the total energy density in the N-S equation. We compute the dot product of v(x, t) with
Eq. (4.1) and obtain

v(x, t) · ∂v(x, t)

∂t
=

1

2

∂v2(x, t)

∂t
=

∂Ev(x, t)

∂t
= −v · [(v · ∇)v]−v ·

(

1

ρ
∇P

)

+ νv · ∇2v (4.3)

This reveals the basic third-order term (−v · [(v · ∇)v]) that drives the turbulent energy.
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The turbulent dynamics are further illuminated if we recast the N-S equation in Fourier
variables. The velocity and pressure can be rewritten as Fourier series in wave number such
that v(x) =

∑

k vke
ik·x and P =

∑

k Pke
ik·x. Note that we only expand these in terms of

wave vector and not frequency. By substituting these into Eq. (4.1) and using the fact that
the terms in a Fourier series form an orthogonal set, the N-S equation becomes:

∂vk

∂t
= −

∑

k=k1+k2

[(vk1
· ik2)vk2

] − 1

ρ
ikPk − νk2vk (4.4)

where vk and Pk are the velocity and pressure at a particular scale with wave vector k and
∑

k=k1+k2
[...] denotes the sum over all combinations of wave vectors k1 and k2 that add up

to the wave vector k. The incompressibility condition, when expressed in Fourier space,
becomes vk · k = 0. As with Eq. (4.3), we can examine the evolution of energy in Fourier
space by taking the dot product of Eq. (4.4) with vk. This gives the following relation:

∂Ek

∂t
= −vk ·

∑

k=k1+k2

[(vk1
· ik2)vk2

] − vk ·
(

1

ρ
ikPk

)

− 2νk2Ek (4.5)

where Ek now denotes the energy at a particular scale with wave vector k. The first term
on the r.h.s. of this equation is the non-linear term that produces turbulent interactions
in a fluid, the second term on the r.h.s. becomes zero due to the incompressibility of the
flow, and the last term on the r.h.s. deals with the viscous dissipation of energy. It can be
readily seen that as k gets large (or in other words the length scale of eddies gets small),
the dissipation term becomes arbitrarily large and dominates the dynamics of the system.
Under these conditions, any energy put into eddies at large k scales will be rapidly dissipated.
However, if over a range of k the dissipative term is small enough such that the non-linear
term dominates Eq. (4.5), the flow is said to be turbulent (see Smith, 2009, for tutorial).

We take the above formalism to one higher degree of complexity and describe the two-
point auto-correlation function:

R(x + L) ≡ v(x, t) · v(x + L, t). (4.6)

where L is the vector separating two arbitrary points in space. If the system is judged to be
“homogeneous” so that statistical properties including derivatives of statistical properties are
independent of location, R is not a function of x. R is termed the two-point auto-correlation
function for the velocity and it is most often written as a matrix function of components vi

and vj

Rij ≡ 〈vi(x + L)vj(x)〉 (4.7)

where 〈...〉 denotes an ensemble average. In fact, the auto-correlation function is always
discussed as a statistical quantity.

From the auto-correlation function, one sees the fundamental problem with turbulence
theory: closure. The evolution of the second-order term involves a third-order term at two
points which is unknown, the evolution of the third-order term involves a fourth-order form,
etc. Specifically, if we assume homogeneity, we can write:

∂

∂t
Rij(L) =

∂

∂t
〈vi(x)vj(x + L)〉

=

〈

vj(x + L)
∂

∂t
vi(x) + vi(x)

∂

∂t
vj(x + L)

〉

∼ − ∂

∂xk
〈vj(x + L)vk(x)vi(x)〉 − ∂

∂Lk
〈vi(x)vk(x + L)vj(x + L)〉 (4.8)
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where summations are carried out over repeated indices in the last line. The last line of
Eq. (4.8) is obtained by approximating the time derivatives in the second line with the non-
linear term (v · ∇)v from the N-S equation and invoking homogeneity. Using the full N-S
equation to rewrite the time derivatives produces additional terms in Eq. (4.8); however,
to demonstrate the turbulence closure problem, only the non-linear term is required. In
general, these equations are known as the vonKármán-Howarth (vK-H) equations of N-S
theory. The technique we use to obtain the energy cascade (see next chapter) avoids this
problem because it asks a much smaller question: “How does the energy of the turbulent
system evolve?” In contrast, the closure problem encountered above stems from the more
difficult question: “How does the power spectrum of the turbulence evolve?”

The auto-correlation function also lends insight into an important scale within the energy-
containing range: the correlation length. Conceptually, we can describe the correlation
length as the spatial scale at which the destruction of energy-containing source objects leads
to smaller fluctuations generated within the fluid. This is the smallest scale of the energy-
containing range. At scales smaller than the correlation length, fluctuations reflect in situ
generation by “random” dynamics so as to demonstrate no reproducible coherence between
the fluctuations (strictly speaking coherence is important in the interactions; however, the
fluctuations are random from one realization to another). Another way to think of this
is as the minimum separation needed for fluctuations to loose “knowledge” of their source
dynamics. One definition of the correlation length is the e-folding distance, or the value of
L where Rij(L)/Rij(0) = 1/e (see Matthaeus et al. (1999) for examples, also Smith et al.
(2001, 2006)). This estimate should agree fairly well with the scale at which the spectrum
breaks and forms the “inertial range”.

A single spacecraft in the solar wind can only make measurements of length scales in terms
of the time it takes the super-Alfvénic solar wind to convect structures passed the spacecraft.
It is typically assumed, the times scale on which fluctuations evolve is much longer than the
time it takes the fluctuations to convect past the spacecraft. The Taylor frozen-in-flow
assumption is then used to directly relate the time scales measured by the spacecraft to
length scales by way of the average solar wind flow speed. At 1AU, the time scale associated
with the correlation length for most measurements is a few hours; however, the quantity
is generally not well measured. Recent studies, using multiple spacecraft to overcome the
limitations of the Taylor frozen-in-flow assumption, find an anisotropic correlation length
which is ∼ 2.7×106 km along the magnetic field direction and ∼ 1.5×106 km in the direction
perpendicular to the magnetic field (Weygand et al., 2009).

In the solar wind, the power spectra for both magnetic and velocity fluctuations, when
plotted as a function of the fluctuation frequency f , are characterized by an f−1 power law
form over the range from ∼ 2.7× 10−6 to 8.0× 10−5 Hz. This is the energy-containing range
of the solar wind. Figure 4.2 plots magnetic power spectra for 5 intervals of solar wind
data. The spectra are multiplied by the frequency, so that horizontal regions of the spectra
indicate f−1 power laws. Vertical lines mark f−1 regions. Matthaeus and Goldstein (1986)
argue the f−1 spectrum seen in the interplanetary energy-containing range is the result of
the superposition of uncorrelated energy-containing signals reminiscent of the f−1 “noise”
present in other fields of study.
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Figure 4.2: Plot of magnetic power spectra multiplied by frequency for 5 intervals of so-
lar wind data. (from the top) The five intervals are 214 days and 184 days of International
Sun-Earth Explorer-3 data from 1978 and 1979, an interval of data from the Interplanetary
Monitoring Platform from years 1967–1968, and two intervals from the OMNI dataset span-
ning from 1964–1974 and 1974–1984. Vertical lines denote the range of frequencies where an
f−1 spectrum is present. This range corresponds to the energy-containing range of the solar
wind. Figure reproduced from Matthaeus and Goldstein (1986).

4.3 Inertial Range Spectra

The inertial range is the subset of the interplanetary spectrum at intermediate scales (i.e.
scales smaller than the energy containing range where fluctuations still retain information
about the source, but larger than the scales where dissipation plays a major role) where the
main dynamic is the interaction of fluctuations and cascade of energy from scale to scale.
Since dissipation of energy plays little to no role in this range and energy must be conserved,
energy entering at one scale must subsequently be transmitted to another scale at a constant
rate throughout the inertial range (Kolmogorov, 1941a). This rate is known as the energy
cascade rate denoted by the symbol ǫ.

Many predictions exist for the spectrum of inertial range fluctuations in fluids and each
predicted spectrum contains an associated prediction for the energy cascade rate. These
predictions can be quite distinct. In hydrodynamics, Kolmogorov (1941a) predicts isotropic
N-S turbulence should possess a spectrum in the form:

P (k) = CKǫ2/3k−5/3 (4.9)
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Figure 4.3: Example of a magnetic field power spectrum in the inertial range computed using
Voyager 1 data. A power law index of −1.73±0.08 is seen over the wave number range from
10−6 km−1 to 3 × 10−4 km−1. In terms of frequency this corresponds to ∼ 5 × 10−5 Hz to
∼ 10−2 Hz, which approximately matches up with the end of the energy containing range in
Figure 4.2. Figure reproduced from Matthaeus and Goldstein (1982a).

where P (k) is the turbulent power integrated over wave numbers with magnitude from |k| to
|k+dk|, CK ≃ 1.6 is the so-called “Kolmogorov constant”, and ǫ is the rate of energy cascade
per unit mass through the spectrum. The constant CK has to be determined by experiment
(e.g., Sreenivasan, 1995). The associated energy cascade rate is given by ǫ ∼ u2

k/τnl where uk

is the characteristic velocity fluctuation associated with scale k = 2π/L. The characteristic
nonlinear time is τnl ≡ (ukk)−1.

It has been argued that MHD turbulence should follow the same spectral form as the
Kolmogorov prediction (Fyfe et al., 1977; Biskamp and Müller, 2000; Mininni et al., 2005).
Numerous authors have argued for a collapse to two-dimensions (2D) in MHD where only
wave vectors perpendicular to the mean magnetic field contain significant amounts of turbu-
lent energy (e.g., Shebalin et al., 1983; Ghosh et al., 1998b; Oughton et al., 1994; Matthaeus
et al., 1996a) and that the 2D spectrum should be governed by Kolmogorov scaling (Mont-
gomery and Turner, 1981; Goldreich and Sridhar, 1995). Dasso et al. (2005) shows that the
large-scale fluctuations within the inertial range at 1AU are quasi-2D in slow wind inter-
vals and quasi-1D in fast wind intervals. Hamilton et al. (2008) show that the bulk of the
magnetic fluctuation energy is quasi-2D at small scales within the inertial range.

However, unlike hydrodynamics and 2D MHD perpendicular to the mean magnetic field,
3D MHD is capable of supporting Alfvén waves. Iroshnikov (1964) and Kraichnan (1965)
predict that the interaction of oppositely propagating Alfvén waves in isotropic MHD tur-
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bulence should possess an inertial range spectrum of the form:

P (k) = AIK(ǫVA)1/2k−3/2 (4.10)

where AIK = C
3/4
K ≃ 1.4 (Matthaeus and Zhou, 1989) and VA = B0/

√
µ0ρ is the Alfvén

speed seen in Eq. (3.23). The associated rate of energy cascade is given by Ek/τA where Ek

is the characteristic total energy fluctuation (kinetic + magnetic) associated with scale k.
The characteristic Alfvén time is τA ≡ (VA · k)−1. Boldyrev (2005, 2006) predict a −3/2
spectral form for the cascade of energy in the direction perpendicular to the mean magnetic
field.

Figure 4.3 shows an example of the power spectrum for magnetic field fluctuations. The
spectrum is computed using data from the Voyager 1 spacecraft shortly after launch, when
it was at approximately 1AU. A power law spectrum of k−1.73±0.08 is seen over the wave
number range from 10−6 to 3 × 10−4 km−1 (Matthaeus and Goldstein, 1982a). This power
law index is within one σ of the Kolmogorov prediction of k−5/3. However, as is discussed in
Section 4.5, the turbulent solar wind system is likely far more complex than either of these
spectral predictions.

4.4 Dissipation Range Spectra

The high-frequency end of the inertial range spectrum terminates in a steepened form we
call the dissipation range in analogy with traditional hydrodynamics. In hydrodynamics,
dissipation is provided by the viscous term ν∇2v in the N-S equation, which can be rewritten
in wave vector notation as −νk2vk. In a turbulent system, this dissipative term is negligible
within the inertial range and only becomes dominant at small system scales leading to
energy dissipation at the smallest spatial (largest k) scales. Hydrodynamics generally takes
the viscosity ν to be constant and the resulting dissipation range spectrum is characterized
by an exponential form (Frisch, 1995; Pope, 2000).

In the solar wind, the power spectrum begins to steepen from the inertial range predic-
tions at scales comparable to the ion cyclotron frequency (Behannon, 1975; Goldstein et al.,
1994). In Section 3.4, we state the MHD description of a plasma breaks down at scales where
the cyclotron motions of the particles become important. As such, many argue dissipation
in the solar wind is not provided by the viscosity ν and magnetic diffusivity η of the MHD
equations, but instead by kinetic processes such as cyclotron and Landau damping. A review
of the resonant and damping phenomena present in the kinetic description of a plasma is
found in Chapter 12 of Kivelson and Russell (1995).

The kinetic dissipation processes are significantly more complicated than the simple form
seen in hydrodynamics and there is no reason to expect the formation of an exponential dis-
sipation spectrum in the solar wind. In fact, an exponential decay spectrum is not observed
in the solar wind until electron scales and a general steepening of the spectrum to a new
power law form is observed from ∼ 0.2 to ∼ 3Hz. This steepened power law is followed
by a less steep spectrum that some have agued my be the onset of a second electron-based
inertial range (Stawicki et al., 2001; Bale et al., 2005; Alexandrova et al., 2009; Sahraoui et
al., 2009, 2010).

The top panel of Figure 4.4 shows an example of the steeping of the magnetic power
spectrum from the inertial range to the dissipation range computed using data from the
ACE spacecraft. The inertial range shows a power law form of f−1.57±0.1, which steepens to
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Figure 4.4: (top) Example of the steepening of the inertial range magnetic spectrum to
the dissipation range spectrum. The spectrum is computed using ACE spacecraft data.
The spectrum “breaks” from a power law index of −1.57 ± 0.01 to a power law index of
−3.36 ± 0.01 at approximately 0.2Hz. (bottom) The spectrum of magnetic helicity. The
dip in the spectrum beginning at approximately 0.2Hz is an indication of dissipation due to
cyclotron damping. Figure reproduced from Hamilton et al. (2008).

a power law of f−3.36±0.1 at ∼ 0.2Hz, indicating the onset of the dissipation range (Hamilton
et al., 2008). The bottom panel shows a spectrum of the magnetic helicity. The dip in the
spectrum present at ∼ 0.2Hz is an indication of the onset of dissipation due to cyclotron
damping.

While the dissipative processes provide the mechanism through which solar wind heating
occurs, for the remainder of this paper, we remain unconcerned with the exact mechanisms
through which dissipation occurs. We instead assume dissipative processes are present and
capable of transferring wave energy into heat and choose to ask the question, “Is the turbulent
cascade of energy through the inertial range capable of providing the energy necessary for
solar wind heating?”

4.5 Problems

None of the theoretical predictions for the turbulent power spectrum are seen in their true
form in the solar wind at 1AU for a great many reasons.

First, all of the above predictions address the total energy only, but implicitly assume
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that the velocity and magnetic spectra possess a common form. They don’t. Podesta et al.
(2006, 2007) show that the velocity spectrum has, on average, a −3/2 index at 1AU while
the magnetic spectrum at 1AU has the familiar −5/3 index (Coleman, 1968; Matthaeus
and Goldstein, 1982b; Smith et al., 2006). Roberts (2007) argues that the velocity index
approaches −5/3 by 5AU. Borovsky (2008) argues that the spectral form is partially dictated
by the presence of discontinuities that he argues are of solar origin and not arising from
turbulence.

Second, the geometry of the underlying wave vectors have long been in question. Matthaeus
et al. (1990) compare and combine correlation functions as a function of ΘBR, the angle
between the mean IMF and the radial direction (solar wind flow direction), under the as-
sumption that a universal functional form exists spanning many solar wind conditions, and
find the so-called “Maltese Cross” result showing that the turbulence is a combination of
wave vectors approximately parallel and approximately perpendicular to the mean IMF.
Dasso et al. (2005) breaks apart the Maltese Cross into fast and slow wind intervals, finding
that the geometry of the large-scale inertial range component near the correlation length is
approximately field-aligned in the fast wind and perpendicular in the slow wind. In truth,
both conditions are a mixture of both wave vector types, but in each instance one vector
orientation dominates.

Third, Goldreich and Sridhar (1995) argue that the perpendicular cascade will deplete the
field-aligned wave vectors and produce a “notch” in the measured spectrum when the mean
IMF is parallel to the flow. The theory of Goldreich and Sridhar (1995) builds on decades of
research predicting the dominance of a perpendicular cascade (Fyfe et al., 1977; Shebalin et
al., 1983; Higdon, 1984; Ghosh et al., 1998b; Oughton et al., 1994; Matthaeus et al., 1996a).
Horbury et al. (2008) and Podesta (2009) claim to find this notch at frequencies from 0.01
to 0.1Hz. Tessein et al. (2009) show that the velocity spectral index is centered on −1.4 and
that both the magnetic and velocity forms are independent of ΘBR, the angle between the
mean magnetic field and the solar wind velocity, at larger inertial range scales (see also Sari
and Valley, 1976). MacBride et al. (2008) shows a weak cascade of energy parallel to the
mean magnetic field which reaches beyond the theory of Goldreich and Sridhar (1995).

Fourth, recent observations by Sahraoui et al. (2009, 2010) claim that the inertial range
spectrum is comprised of highly perpendicular wave vectors that avoid both cyclotron and
Landau damping to create an apparent “dissipation range” without dissipation until the
cascade is eventually terminated at electron scales.

No theories currently predict a rate of energy cascade based on spectral properties with
this high degree of complexity. These observations strongly suggest a non-stationary spec-
trum that is evolving toward something other than what it is and this is beyond the scope
of present spectral-based predictions for the energy cascade rate.
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Chapter 5

Third-Moment Theory

The simplest and most commonly used method for extracting ǫ, the rate of energy cascade per
unit mass from large to small-scale fluctuations, has been to compute the power spectrum and
obtain ǫ from theories that link it to the spectral amplitude. Due to the closure problem, the
power spectra method for determining ǫ requires one to make assumptions on the underlying
dynamics and geometry of the turbulence which can be poorly resolved and recent analyses
have raised issues with the conclusions derived in this manner.

The third-moment method for determining ǫ, which relates ǫ to the third-order struc-
ture function of turbulent fluctuations, has had a long standing and well tested history in
hydrodynamics dating back to the 1940’s (Kolmogorov, 1941b). This method comes from
examining the Navier-Stokes equation, which governs the fluid dynamics of a hydrodynamic
system, and is true regardless of the underlying dynamics of the turbulent interaction pro-
cess. This method is extended to MHD by Politano and Pouquet (1998a,b), which allows
for the application of third-moment theory to the solar wind and a better understanding of
the role turbulence plays in the heliosphere.

In this chapter, we begin by demonstrating one derivation of the simpler hydrodynamic
third-moment expressions in order to demonstrate the basic principles of the theory and then
move on to discuss how these concepts are applied to the more complex magnetohydrody-
namic case, which is the main focus of this thesis. For both hydrodynamics and MHD, an
isotropic geometry for the turbulent fluctuations is discussed and, in MHD, an anisotropic
“hybrid” geometry with respect to the orientation of the mean magnetic field is also de-
scribed. Basic considerations which are required for the application of the MHD expressions
to the solar wind are also mentioned.

5.1 Hydrodynamic Third-Moment Theory

The aim of third-moment theory is to obtain an exact relationship for the rate of energy cas-
cade through the inertial range. Recall from Section 4.3 that Kolmogorov (1941a) predicts,
using phenomenological arguments, that the hydrodynamic energy cascade rate should be
related to the velocity fluctuations uk at scale L by the relationship:

ǫ ∼ u2
k/τnl ∼ u3

k/L (5.1)

where τnl ≡ (ukk)−1. It is, therefore, not unexpected that the energy cascade rate should be
related to the “third-moment” or “third-order structure function” of velocity fluctuations.

35



There are a variety of methods, that can be used to explicitly derive the third-moment
formalism. Here, we present one method, which is analogous to the technique used by
Politano and Pouquet (1998b) for MHD turbulence and Wan et al. (2009) for the MHD
shear formalism we use in Chapter 9.

We begin by obtaining an expression for the mean rate of energy dissipation in a hy-
drodynamic system by again considering the N-S equation seen in Eq. (4.1). We re-express
the N-S equation in Einstein summation notation, where the subscripts i and j denote the
components of vectors and sums are applied over repeated indices. In this notation, the N-S
equation at the position x becomes:

∂vi(x)

∂t
+ vj(x)

∂

∂xj

vi(x) = −1

ρ

∂

∂xi

P (x) + ν
∂

∂xj

∂

∂xj

vi(x) (5.2)

We can also write the N-S equation at another position x′ = x + L, where L is the “lag”
vector separating the positions x and x′:

∂vi(x
′)

∂t
+ vj(x

′)
∂

∂x′
j

vi(x
′) = −1

ρ

∂

∂x′
i

P (x′) + ν
∂

∂x′
j

∂

∂x′
j

vi(x
′) (5.3)

Note that the positions x and x′ are any two arbitrary positions and the lag vector L is
simply the difference between these two positions.

We are interested in analyzing the turbulent fluctuations, so we consider the difference
between Eq. (5.3) and Eq. (5.2):

∂δvi(L)

∂t
+ vj(x

′)
∂

∂x′
j

δvi(L) + vj(x)
∂

∂xj

δvi(L)

= −1

ρ

∂

∂x′
i

δP (L) − 1

ρ

∂

∂xi

δP (L) + ν
∂

∂x′
j

∂

∂x′
j

δvi(L) + ν
∂

∂xj

∂

∂xj

δvi(L) (5.4)

where δvi(L) = vi(x
′)− vi(x) and δP (L) = P (x′)−P (x). In Eq. (5.4), we note x and x′ are

independent of each other, meaning ∂vi(x′)
∂xj

= 0 and ∂vi(x)
∂x′

j

= 0. The same is also true of the

pressure terms. Therefore, the terms within the spatial derivatives in the above equation
were written as derivatives of δvi(L) and δP (L).

We now multiply Eq. (5.4) by δvi(L) and average to obtain an equation for the mean
energy per unit mass in turbulent hydrodynamic fluctuations. By using the chain rule to
manipulate the derivatives and noting derivatives are linear operators that can be pulled out
of the averaging, we obtain the equation:

∂

∂t

〈

[δvi(L)]2
〉

+

〈

vj(x
′)

∂

∂x′
j

[δvi(L)]2
〉

+

〈

vj(x)
∂

∂xj
[δvi(L)]2

〉

= −2

ρ

〈

δvi(L)
∂

∂x′
i

δP (L)

〉

− 2

ρ

〈

δvi(L)
∂

∂xi
δP (L)

〉

+ν
∂

∂x′
j

∂

∂x′
j

〈

[δvi(L)]2
〉

+ ν
∂

∂xj

∂

∂xj

〈

[δvi(L)]2
〉

−2ν

〈[

∂

∂x′
j

vi(x
′)

]2〉

− 2ν

〈[

∂

∂xj

vi(x)

]2〉

(5.5)

where 〈...〉 denotes an ensemble average and the last four terms on the r.h.s. of this equation
are derived from the last two terms on the r.h.s. of Eq. (5.4).
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By applying the condition of incompressibility
(

∂
∂xj

vj(x) = 0
)

, we can pull the derivatives

out of the averages in the last two terms on the l.h.s. and first two terms on the r.h.s. of
Eq. (5.5). We can make use of homogeneity to say ∂

∂x′

j

〈...〉 = − ∂
∂x′

j

〈...〉 = ∂
∂Lj

〈...〉. Homo-

geneity also allows us to combine the last two terms on the r.h.s. of Eq (5.5) and results in
the cancellation of the two pressure terms, resulting in the equation:

∂

∂t

〈

[δvi(L)]2
〉

+
∂

∂Lj

〈

δvj(L)[δvi(L)]2
〉

= 2ν
∂

∂Lj

∂

∂Lj

〈

[δvi(L)]2
〉

− 4ν

〈[

∂

∂Lj
vi(x)

]2〉

(5.6)

As it turns out, ν
〈

[

∂
∂Lj

vi(x)
]2
〉

is identified as the mean rate of energy dissipation, so that

the last term on the r.h.s. of Eq. 5.6 is equivalent to −4 times the mean energy dissipation
rate (Frisch, 1995). We are interested in determining the turbulent energy cascade rate ǫ
in the inertial range, which should be equivalent to the mean energy dissipation rate for
turbulence that has reached a statistically steady state. This is simply a statement that, if
the average energy at each scale is unchanging in time, then the energy entering the inertial
range should be equivalent to the energy leaving the inertial range.

We, therefore, enforce the following two constraints: 1) We assume that the turbulence
has reached a steady state, so that the first term on the l.h.s. becomes zero and the last term
on the r.h.s. becomes −4ǫ. 2) We constrain ourselves to only consider the inertial range,
so that the remaining dissipative term (the first term on the r.h.s.) is zero. Recall that a
key feature of turbulence is an extended inertial range where dissipation is negligible. These
constraints leave us with the following equation for the energy cascade rate:

−4ǫ =
∂

∂Lj

〈

δvj(L)[δvi(L)]2
〉

(5.7)

Re-expressing the above equation in vector notation, gives us the Kármán-Howarth-Monin
(KHM) relation for homogeneous hydrodynamic turbulence (Monin, 1959; Monin and Ya-
glom, 1975):

−4ǫ = ∇L·
〈

δv(L)|δv(L)|2
〉

(5.8)

where ∇L· is a divergence with respect to the lag vector L. This is general and true for
spatial scales nominally regarded to be within the inertial range without regard for spectral
form, wave vector anisotropy, or fluctuation anisotropy (page 78 of Frisch, 1995).

In the limit of isotropic turbulence, one can integrate Eq. (5.8) over a sphere of radius
L = |L| and obtain a “4/3 Law” of the Yaglom (1949) form for the energy cascade rate:

〈

δvL(L)|δv(L)|2
〉

= −4

3
ǫHD|L| (5.9)

where vL is the component of the velocity fluctuation along the separation vector L such
that vL ≡ v · L/L and ǫHD is the hydrodynamic rate of energy cascade. The r.h.s of Eq. 5.9
is often referred to as a “third-moment” and is a generalization of the third-order structure
functions traditionally used in hydrodynamics. This form of hydrodynamic third-moment
theory is most analogous to the MHD formalism discussed in the remaining sections of this
chapter.

Historically, in hydrodynamics, third-moment derivations proceed by examining the time
derivative of the two-point auto-correlation function in a similar manner to the analysis
in Eq. (4.8). While not shown here, Kármán and Howarth (1938) obtain the so called
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“Kármán-Howarth” equation relating the energy cascade rate to correlation functions of the
velocity. This expression is true for homogeneous, isotropic turbulence. The KHM relation
seen in Eq. (5.8) is simply a generalization of the Kármán-Howarth equation to anisotropic
hydrodynamics.

Kolmogorov (1941b) uses the Kármán-Howarth equation to obtain the “Kolmogorov 4/5
Law” relating the inertial range energy cascade rate in homogeneous, isotropic turbulence
to a third-order structure function of velocity fluctuations:

SHD
3 (L) ≡

〈

[vL(x + L) − vL(x)]3
〉

= −4

5
ǫHD|L| (5.10)

Unlike Eq. (5.9), this expression is only written in terms of δvL(L). It can be shown that both
this equation and Eq. (5.9) are consistent expressions for isotropic, hydrodynamic turbulence.
The Kolmogorov 4/5 Law is the more traditional expression for hydrodynamic turbulence
and, for the remainder of this paper, the Kolmogorov Law is what is meant when we refer
to the hydrodynamic third-moment expression.

5.2 Isotropic MHD Third-Moment Theory

Politano and Pouquet (1998a,b) extend Eq. (5.8)–(5.10) to incompressible MHD turbulence
using the Elsässer variables. Recall the MHD equations written in terms of the Elsässer
variables seen in Eq. (3.8). These equations are of the same form as the N-S equation and
it, therefore, stands to reason that the same derivation performed in Eq. (5.2)–(5.7) can
equivalently be applied to this formulation of the MHD equations. The only difference is
that the MHD version involves two separate equations for Z+ and Z− instead of one equation
for v. By defining the vector:

D±
3 (L) ≡

〈

δZ∓(L)|δZ±(L)|2
〉

(5.11)

we can derive from the MHD equations, the MHD analog of the KHM relation, using the
same method we describe for hydrodynamics:

∇L · D±
3 (L) = −4ǫ± (5.12)

where δZ±(L) ≡ Z±(x + L) − Z±(x) and ǫ± denote the rate of cascade of the fluctuation
energy related to |δZ±|2. Due to this convention, the total energy cascade rate per unit
mass, ǫT , is given by

ǫT = (ǫ+ + ǫ−)/2. (5.13)

We will generally suppress the superscript “T”.
The Politano and Pouquet (1998b) expression for energy cascade in isotropic MHD tur-

bulence follows from application of the divergence in spherical coordinates:

−4ǫ± =
(

1

L2

)

∂

∂L

(

L2D±
3 (L)

)

+
1

L sin Θ

∂

∂Θ

(

sin ΘD±
3 (Θ)

)

+
1

L sin Θ

∂

∂Φ
D±

3 (Φ) (5.14)

In isotropy, the angular dependence is zero and Eq. (5.14) integrates to a “4/3 law”:

D±
3,ISO(L) ≡

〈

δZ∓
L (L)|δZ±(L)|2

〉

= −(4/3)ǫ±ISOL (5.15)
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where Z∓
L is the component of Z∓ in the direction of the lag separation vector. Using

Eq. (5.13) and (5.15), we define a total third-moment in the isotropic MHD formalism as:

D3(L) ≡ D+
3,ISO(L) + D−

3,ISO(L)

2
= −(4/3)ǫISOL (5.16)

5.2.1 Isotropic Application to the Solar Wind

In the solar wind, it is difficult to obtain measurements of the velocity and magnetic field at
many different positions as is required to evaluate Eq. (5.15). However, for single spacecraft
measurements, we can make use of fact that the solar wind flows past the spacecraft in
the radial direction with a super-Alfvénic velocity VSW , carrying velocity and magnetic field
fluctuations along with it. Using the Taylor frozen-in-flow assumption, we postulate that the
time it takes for fluctuations to significantly evolve is much longer than the time it takes for
the bulk solar wind velocity to carry them past the spacecraft. As a result, measurements
separated by a positive time lag τ can be associated with measurements sperated in position
by a lag vector with magnitude L = VSW τ and directed in the radial direction. Eq. (5.15)
can be modified in the following way:

D±
3,ISO(τ) ≡

〈

δZ∓
R (τ)|δZ±(τ)|2

〉

= +(4/3)ǫ±ISOVSW τ (5.17)

where the subscript “R” denotes the radial component directed from the Sun’s center to the
point of measurement and the sign change results from positive time lags corresponding to
negative spatial lags relative to the radial direction.

We also add one more complication to the analysis: Z− (Z+) refers to propagation parallel
(anti-parallel) to the mean magnetic field. In the solar wind, the mean field can be directed
sunward (in) or anti-sunward (out), but the dominant propagation direction is consistently
anti-sunward (Belcher and Davis, 1971; Smith et al., 1995). Therefore, we choose to collect
D±

3 so as to average Dout
3 and Din

3 according to the direction of propagation relative to the

Sun. As a result D±
3,ISO → D

out/in
3,ISO , ǫ±ISO → ǫ

out/in
ISO , etc.

5.3 Anisotropic MHD Third-Moment Theory

Matthaeus et al. (1990), Dasso et al. (2005), and Hamilton et al. (2008) all reveal significant
anisotropies associated with the multi-dimensional correlation function or spectrum of wave
vectors. For this reason, and because of the theoretical considerations predicting anisotropic
spectra outlined in Chapter 4, MacBride et al. (2008) uses Eq. (5.12) to derive expressions
for axisymmetric turbulence about a mean magnetic field. If we write D±

3 (L) in cylindrical
coordinates the components become:

D±
3,⊥ ≡

〈

δZ∓
⊥ |δZ±|2

〉

(5.18)

D±
3,‖ ≡

〈

δZ∓
‖ |δZ±|2

〉

(5.19)

where the ⊥ and ‖ denote the components of the vector perpendicular and parallel to the
mean magnetic field respectively. The axisymmetric form of Eq. (5.12) then becomes:

−4ǫ± =
(

1

L⊥

)

∂

∂L⊥

(

L⊥D±
3,⊥

)

+
∂

∂L‖

D±
3,‖. (5.20)
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where L⊥ is a lag in the direction perpendicular to the mean magnetic field and L‖ is a
lag in the direction parallel to the mean magnetic field. The perpendicular and parallel
components are sometimes referred to with the superscripts “2D” and “1D” in this thesis
because the perpendicular component involves two orthogonal spatial dimensions and the
parallel component involves only one spatial dimension. At this point, the two derivatives
on the r.h.s. need only sum to produce a constant rate of cascade that is independent of lag
L. We can make a further assumption for simplicity that:

−4ǫ±⊥ ≡
(

1

L⊥

)

∂

∂L⊥

(

L⊥D±
3,⊥

)

(5.21)

−4ǫ±‖ ≡ ∂

∂L‖

D±
3,‖ (5.22)

Integrating the 2 dimensional Eq. (5.21) over a circle of radius L⊥ and the 1 dimensional
Eq. (5.22) out to the lag L‖, gives the expressions:

D±
3,⊥(L⊥) ≡

〈

δZ∓
⊥(L⊥)|δZ±(L⊥)|2

〉

= −2ǫ±⊥L⊥ (5.23)

and

D±
3,‖(L‖) ≡

〈

δZ∓
‖ (L‖)|δZ±(L‖)|2

〉

= −4ǫ±‖ L‖ (5.24)

We define the total 2D cascade rate in accordance with Eq. (5.13) and take the total 2D
third-moment to be:

D2D
3 (L⊥) ≡ D+

3,⊥(L⊥) + D−
3,⊥(L⊥)

2
= −2ǫ2DL⊥ (5.25)

where ǫ2D = (ǫ+
⊥ + ǫ−⊥)/2 is the total perpendicular cascade rate. Likewise, the total 1D

third-moment is taken to be:

D1D
3 (L‖) ≡

D+
3,‖(L‖) + D−

3,‖(L‖)

2
= −4ǫ1DL‖ (5.26)

where ǫ1D = (ǫ+
‖ + ǫ−‖ )/2 is the total parallel cascade rate.

We can also define an expression for the total axisymmetric “hybrid” cascade, such that:

ǫ±hybrid =
D±

3,⊥

2L⊥

+
D±

3,‖

4L‖

(5.27)

= ǫ±⊥ + ǫ±‖ (5.28)

From the axisymmetric form, we recover the isotropic cascade if ǫ±‖ = (1/2)ǫ±⊥ and L⊥ = L‖,
or:

ǫ±ISO =
D±

⊥

2L⊥
+

D±
‖

4L‖

=
3

4

D±
ISO

L
. (5.29)
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From Eq. (5.13), the total hybrid energy cascade is given by ǫT
hybrid = (ǫ+

hybrid + ǫ−hybrid)/2
and, as with Eq. (5.16), we can employ this equation along with Eq. (5.23) and (5.24) to
define the total third-moment DT

3 at scale L in the hybrid formalism:

DT
3 (L) ≡ D+

3,⊥(L⊥ = L) + D−
3,⊥(L⊥ = L)

4

+
D+

3,‖(L‖ = L) + D−
3,‖(L‖ = L)

8
(5.30)

Here we assume L⊥ = L‖ = L. From this equation, we expect DT
3 = ǫT

hybridL. As with the
isotropic case, the superscript “T” will typically be suppressed. We have separately imposed
the assumption that ǫ±⊥ and ǫ±‖ are each independent of lag. This may not be true, but it
does represent a simplification and useful starting point for the purpose of presentation and
discussion.

5.3.1 Anisotropic Application to the Solar Wind

To apply this concept, we rotate the data to mean field coordinates (Belcher and Davis,
1971; Bieber et al., 1996):

êx ≡ (êR × êB) /|êR × êB|, (5.31)

êy ≡ êz × êx, (5.32)

êz ≡ êB. (5.33)

where êR is the radial direction and êB is the direction of the mean magnetic field. With
a single spacecraft in the solar wind the êy direction is the only perpendicular direction for
which we have a measured nonzero lag because êx is perpendicular to the wind velocity and
gives no measured lag. In principle, any lag across the mean field direction could be used
to measure the perpendicular cascade, but in this coordinate system only the êy direction
provides a finite lag perpendicular to the mean magnetic field. We also note that in the
solar wind L⊥ = VSW τ sin(ΘBR) and L‖ = VSW τ cos(ΘBR) where ΘBR is the angle between
the radial direction and the direction of the mean field. Recall that the typical value for
ΘBR at 1AU in the ecliptic plane is 45o due to the Parker spiral. The resulting form for the
perpendicular cascade is:

D±
3,⊥(τ) ≡

〈

δZ∓
y (τ)|δZ±(τ)|2

〉

= 2ǫ±⊥VSW τ sin(ΘBR) (5.34)

while the parallel cascade is given by:

D±
3,‖(τ) ≡

〈

δZ∓
z (τ)|δZ±(τ)|2

〉

= 4ǫ±‖ VSW τ cos(ΘBR). (5.35)

Likewise, Eq. (5.25), (5.26), and (5.30) are appropriately modified for application to the solar
wind. The ‖ and ⊥ forms of the hybrid MHD cascade expression are independent and can be
obtained simultaneously from the data (MacBride et al., 2008). As with the isotropic case,
we again associate Z± with Zout/in according to the direction of fluctuation propagation for
all the same reasons and with the same effects mentioned in Section 5.2.1.
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The core expressions given by Eq. (5.8) (for incompressible hydrodynamics) and (5.12)
(for incompressible MHD) are considered rigorous within the inertial range scales regardless
of the form taken by the energy spectrum (Frisch, 1995; Biskamp, 2003). Variations derived
from geometry considerations (isotropic, hybrid, etc.) are refinements that may or may not
apply in some cases.
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Chapter 6

Early Third-Moment Applications in

the Solar Wind

As discussed in Chapters 3 and 4, there is strong evidence that turbulent processes may be
at work in the solar wind. While the effectiveness of third-moment expressions in traditional
hydrodynamic situations is well established, the application of the MHD analogues to the
solar wind presents new challenges that largely stem from the restrictions of single spacecraft
data. Sections 5.2.1 and 5.3.1 briefly describe some of the considerations necessary to apply
the MHD third-moment expressions to single spacecraft solar wind measurements. The
analyses of MacBride et al. (2005) and MacBride et al. (2008) represent two of the early
studies, which demonstrate the viability of using third-order structure functions to compute
the energy cascade rate in the solar wind.

6.1 MacBride et al. 2005

MacBride et al. (2005) perform a preliminary analysis using a generalized form of the
isotropic MHD third-moment expression. They compute cascade rates for selected 27 day
intervals of magnetic field and plasma data from the ACE spacecraft, as well as, attempt an
analysis of a 7 yr period of data. Three important conclusions are drawn: 1) the isotropic
MHD third-moment follows a linear scaling with lag in several selected intervals of data as is
expected by turbulence theory, 2) the sign of ǫ, as computed from this expression, is positive,
which is consistent with the expected cascade of energy from large to small scales, and 3)
energy cascade rates computed from the isotropic third-moment roughly agree with cascade
rates inferred from power spectra. Not only do these conclusions demonstrate the viability of
applying third-moments to the solar wind, but the results also lend support to the assertion
that turbulent processes are at work in the solar wind.

The isotropic MHD third-moment expression seen in Eq. (5.17) assumes that turbulent
interactions occur in all three spatial dimensions. This expression can be generalized to
turbulence in any number of dimensions, giving the relation (Politano and Pouquet, 1998b):

D±
3,ISO(τ) ≡

〈

δZ∓
R (τ)|δZ±(τ)|2

〉

= +(4/d)ǫ±ISOVSW τ (6.1)

where d represents the dimension of the turbulence. Recall from Section 4.3 that many argue
solar wind turbulence should collapse to 2D (d = 2) in the direction perpendicular to the
magnetic field.
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Figure 6.1: (left) Plot of hydrodynamic (dashed blue) and isotropic MHD (solid black) third-
moments for the 27 day period of ACE data spanning from day 157 to 183 of year 2000. Note
the linear scaling with lag as predicted by turbulence theory and positive slope indicating a
cascade of energy from large to small scales. (right) Plot of third-moments divided by time
lag τ . Figure reproduced from MacBride et al. (2005).

The MacBride et al. (2005) analysis first considers one Carrington rotation (∼ 27 days)
of ACE spacecraft magnetic field and plasma data spanning from day 157 to day 183 of year
2000. The isotropic MHD third-moment, isotropic HD third-moment, and 91 magnetic power
spectra are computed using this data. Figure 6.1 plots the HD and MHD third-moments as a
function of lag (or more specifically, the time separation τ). Note that, aside from the down
turn seen in the MHD structure function neat 5× 104 s, both the HD and MHD forms show
a linear scaling with lag. The structure functions also have a positive slope when plotted
against τ indicative of a cascade of energy from large to small scales.

Figure 6.1 also plots the structure functions divided by lag. This should be a constant
value in the inertial range and proportional to the energy cascade rate. The analysis finds
that the average value of (4/d)ǫ from the MHD and HD expressions are 2.5× 104 and 2.0×
104 J/kg-s respectively. Assuming 2D turbulence these become 1.25×104 J/kg-s for isotropic
MHD and 1.00× 104 for isotropic HD. The fact that the MHD and HD expressions produce
similar results suggests longitudinal solar wind speed fluctuations, at least in this specific
interval, dominate the MHD expression. Magnetic power spectra are also produced for 91
subintervals within the same Carrington rotation. The average energy cascade rate inferred
from the magnetic power spectra over this interval is 1.2×104 J/kg-s. This is reasonably close
considering the power spectrum method relies on assumptions of the underlying turbulent
dynamics, which are unclear in the solar wind.

MacBride et al. (2005) also experiments with detrending and stationarity testing in an
effort to analyze longer intervals of data. The process of detrending involves subtracting
large-scale trends from the data in order to isolate the turbulent fluctuations. This concept
is employed again in the analysis described in Chapter 9. Stationarity testing involves
analyzing only intervals of data in which the statistical properties are determined to be
“stationary” or invariant in time. There are diverse methods for doing this. A rigorous
“stationarity of the mean” analysis by Matthaeus and Goldstein (1982b) tests the statistical
convergence of the mean field with respect to data volume. Experiments with this technique
by MacBride et al. (2005) are less than satisfying. A convergence of the variance test,
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Figure 6.2: (left) Plot of hydrodynamic (dashed blue) and isotropic MHD (solid black) third-
moments for 7 years of data from 1998 through 2004. (right) Plot of third-moments divided
by time lag τ . Figure reproduced from MacBride et al. (2005).

which may be more applicable for the third-moment expressions, requires more data than is
available. Simpler, less rigorous, tests aimed at removing transients involve the comparison
of average quantities over multiple subsets of the data interval. All of these techniques
provide a method for ensuring the homogeneity of selected data intervals. In our analyses,
presented in Chapters 7–9, we settle for the deliberate removal of discontinuities using event
lists.

Figure 6.2 shows a preliminary analysis of 7 years of ACE data from year 1998 through
2004. A stationarity test is performed on the mean of the data and detrending is employed
in this analysis. While the analysis produces third-moments which are relatively linear with
lag, the authors note that the techniques used in analyzing large volumes of data require
improvement.

In Chapter 7, it is demonstrated that the ability to utilize large volumes of data is
necessary in order to produce accurate and reproducible results due to the slow convergence
of third-order structure function expressions. However, the application of third-moments on
large volumes of data presents several complications which will be further addressed in the
next section.

6.2 MacBride et al. 2008

The analysis of MacBride et al. (2008) builds on the analysis presented in the previous
section and forms the basis for our three analyses presented in Chapters 7–9. This study
both provides a more in depth analysis of third-order structure functions in the solar wind by
improving on the application to large volumes of data and introducing the anisotropic hybrid
formalism described in Section 5.3. The MacBride et al. (2008) analysis is an extensive study,
touching on many aspects, ranging from the application of third-moments to large volumes
of single spacecraft data to the structure of turbulence in fast and slow wind streams and the
evolution over the course of the solar cycle. Here, we present the basic analysis technique and
findings of MacBride et al. (2008) as they pertain to the analyses presented in this thesis.

The analysis techniques of MacBride et al. (2008) form the basis of the analyses to come,
and thus we describe it in detail here. MacBride et al. (2008) use 7 yrs of ACE data ranging
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from 1998 to 2005. The data is divided into consecutive subintervals of equal length, in the
case of this analysis they use 48 hr intervals. For each of the subintervals, estimates of the
various third-moments (i.e. hydrodynamic, isotropic, hybrid) are computed. The ensemble
average involved in the third-moment expressions is taken to be the average over all of the
subintervals.

Each subinterval has a different average velocity VSW and, therefore, equivalent time lags
τ are not comparable between different subintervals unless the average velocities happen to
exactly match. To get around this, MacBride et al. (2008) employs an interpolation method
to scale each third-moment estimate to a constant average velocity. For ACE plasma data,
τ is always an integer multiple of 64 s. Therefore, for each subinterval of data, third-moment
estimates at the actual spatial lags VSW τ (whatever VSW is for that interval), are interpolated
onto a set of 113 discrete, fixed spatial lags. The discrete spatial lags are defined by assuming
the ACE cadence of 64 s and a 400 km/s wind speed: 400 km/s×64n s = 25, 600n km, where
1 < n < 113. Using this interpolation method, MacBride et al. (2008) averages many third-
moment estimates at the same spatial lag, although each estimate is from solar wind with
different wind speeds.

Once ensemble averages are performed, cascade rates are computed using Eq. (5.10),
(5.17), or (5.34) and (5.35) from Chapter 5. As we mention in Chapter 5, the MacBride
et al. (2008) analysis accumulates third-moments in the out/in fashion instead of +/−.
MacBride et al. (2008) compute uncertainties associated with the third-moment cascade
rates simply based on the statistical spread of third-moments divided by lag. A more refined
error analysis is presented in the next chapter.

Figure 6.3 shows the results of the analysis considering all of the data from 1998 to 2005.
The MacBride et al. (2008) analysis does not attempt to remove the transient structures
described in Chapter 3. Detrending and stationarity testing also are not employed in this
analysis, although they were experimented with and rejected. Blue lines in the figure rep-
resent outward propagation quantities, red lines represent inward propagation quantities,
solid black lines represent total out+in quantities, and the black dashed line represents the
hydrodynamic version. The top row of panels show the second-moment (left) of velocity
and magnetic fluctuations (red and blue lines) and the velocity fluctuations alone (dashed
line). These quantities can be used to compute the turbulent power spectrum, the MHD
versions of which are plotted in the top right panel. The total power in outward and inward
propagating, magnetic and velocity fluctuations follows a power law form of k−1.6±0.15, which
is less than 0.5σ from the Kolomogorov prediction for the hydrodynamic spectral form (see
Section 4.3). Using the Kolmogorov prediction, an energy cascade rate of 5.5× 104 J/kg-s is
obtained. MacBride et al. (2008) note the heating rate obtained from the power spectra is
too large to match heating observations.

The bottom 4 rows of Figure 6.3 plot the third-moments (left) and third-moments divided
by lag (right), which is proportional to the energy cascade rate. The second row of panels
corresponds to the isotropic expression seen in Eq. (5.17). The third row corresponds to the
perpendicular (2D) expression seen in Eq. (5.34) and the fourth row corresponds to the par-
allel (1D) expression seen in Eq. (5.35). The fifth row shows the total parallel+perpendicular
third-moments derived from Eq. (5.28). Each of the total third-moment expressions (solid
black lines) follow an approximately linear trend with lag as is expected by the theory. En-
ergy cascade rates computed from each of the third-moments are reproduced in Table 6.1.
Cascade rates computed from the third-moments are more reasonable than the power spectra
estimate, which is expected since the third-moment expressions do not make assumptions
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Figure 6.3: Third-moment analysis of ACE data from 1998 to 2005 using 2 day subintervals.
(top left) Plot of second order structure functions for outward propagating MHD fluctuations
(blue), inward propagating MHD fluctuations (red), and hydrodynamic fluctuations (dashed
black). (top right) Power spectra computed from the second-order structure functions for
the inward and outward propagating power (same color scheme) and the total magnetic and
velocity fluctuation power (solid black). The bottom four rows show third-moment functions
for the various turbulence geometries (left) and the third-moments divided by τ , which is
proportional to ǫ (right). The color scheme is the same as the top panels. The second row
shows the isotropic MHD expression. The third row shows the perpendicular component of
the hybrid geometry expression. The fourth row shows the parallel component of the hybrid
geometry expression. The fifth row shows the total hybrid geometry. Note the approximately
linear scaling of the total out+in cascade rates as a function of lag and the approximately
constant cascade rates over the scales analyzed. Figure reproduced from MacBride et al.
(2008).
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Table 6.1: Computed energy cascade rates for all D3 in Figure 6.3. Table reproduced from
MacBride et al. (2008).

ǫ ± σǫ (Stand. Dev.) [×103 Joules/kg-s]
Geometry MHD Outward MHD Total MHD Inward Hydrodynamic
ISO 10.50 ± 0.22(2.39) 6.50 ± 0.14(1.45) 2.50 ± 0.12(1.26) 4.96 ± 0.07(0.76)
2D 12.20 ± 0.29(3.12) 5.62 ± 0.10(1.08) −0.96 ± 0.27(2.86) 4.96 ± 0.07(0.76)
1D 1.81 ± 0.10(1.04) 2.29 ± 0.09(0.98) 2.77 ± 0.12(1.24) 4.96 ± 0.07(0.76)
2D+1D 14.00 ± 0.33(3.51) 7.91 ± 0.19(2.01) 1.81 ± 0.26(2.72) 4.96 ± 0.07(0.76)

on the underlying dynamics of the turbulence.
Aside from simply demonstrating the application of third-moments to large volumes of

solar wind data, MacBride et al. (2008) also perform several studies examining the evolution
and structure of the solar wind. In one study, the structure of the turbulence in fast and
slow wind streams is examined. MacBride et al. (2008) take fast wind streams to be intervals
where the average velocity is greater than 500 km/s and slow wind streams to be intervals
where the average velocity is less than 400 km/s. This convention follows from the analysis
of Dasso et al. (2005). Using the above outlined analysis techniques, fast and slow wind
intervals are separately analyzed.

Figure 6.4 summarizes the results of these analyses. The left panel plots total cascade
rates for slow wind intervals, fast wind intervals, and all data using the isotropic MHD
(green), hybrid MHD (solid black), and hydrodynamic (dashed black) formalisms. The
parallel and perpendicular components of the hybrid formalism are plotted in blue and
red respectively. The results show greater cascade rates in fast wind intervals, which is
consistent with the greater proton heating rates with increasing VSW expected by Eq. (3.25)
(Vasquez et al., 2007). The results also show that the energy cascade in slow winds is nearly
isotropic, while the cascade in fast winds is primarily in the perpendicular direction. This
indicates that the small-scale inertial range wave vectors will become increasingly oriented
in the perpendicular direction (2D turbulence) as the turbulence evolves. This is in keeping
with the predicted dominance of the perpendicular cascade by many authors, mentioned in
Section 4.5 and provides evidence for the evolution of the turbulence at 1AU from the field
aligned wave vectors observed by Dasso et al. (2005) toward the expected 2D perpendicular
geometry.

The right panel of Figure 6.4 attempts to further illuminate the anisotropy present in
fast and slow winds. The cascade rates shown in the plot are computed from the parallel
and perpendicular components of the hybrid formalism using intervals further subset based
on the direction of the mean magnetic field. Intervals are divided such that only intervals
where the mean magnetic field is approximately radial or approximately perpendicular to
the radial direction are analyzed. MacBride et al. (2008) take a radial field to be when
0◦ < ΘBR < 25◦ or 155◦ < ΘBR < 180◦, which provides an observed lag only in the parallel
direction. The perpendicular field is taken to be when 65◦ < ΘBR < 115◦, which provides an
observed lag only oriented in the perpendicular direction. Results are consistent with those
in the left panel

In another study, the evolution of the turbulent cascade over the course of the solar cycle
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Figure 6.4: (left) Summary of total energy cascade rates for slow wind data (VSW <
400 km/s), fast wind data (VSW > 500 km/s), and all data. The black solid line gives
cascade rates based on the hybrid MHD formalism, the green line uses the isotropic MHD
formalism, and the dashed black line uses the hydrodynamic expression. The red line shows
perpendicular component of the hybrid cascade and the blue line shows the parallel com-
ponent of the hybrid cascade. (right) Plot of cascade rates for slow and fast wind streams,
where the mean magnetic field is either directed radially (blue line) or perpendicular to the
radial direction (red line). Note that, in slow winds, parallel and perpendicular cascade
rates tend to be approximately equal, while in fast winds, the perpendicular cascade tends
to dominate. Fast wind streams also appear to have larger energy cascade rates on average.
Figure reproduced from MacBride et al. (2008).

Figure 6.5: Plot of cascade rates separately computed for each year of ACE data from 1998
to 2005 using the isotropic third-moment. The color scheme is the same a Figure 6.3. Notice
the approximately constant total cascade rate across all years indicating the turbulent energy
cascade is unaffected by the solar cycle. However, considerable variability is present in the
outward/inward components from year to year. Figure reproduced from MacBride et al.
(2008).
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is examined by separately analyzing each year of ACE data from 1998 through 2005 using
the techniques outlined above. Figure 6.5 summarizes the computed cascade rates using the
isotropic MHD and hydrodynamic expression. The color scheme is the same as Figure 6.3.
The year 1998 occurs at the beginning of a rise into solar maximum, while 2005 occurs near
the end of the fall into the next solar minimum. While the individual outward and inward
(blue and red) cascade rates show considerable variability, the total cascade rate (solid black)
remains relatively constant over the course of the solar cycle. This indicates that turbulent
cascade rates can provide a consistent heating source for the solar wind. In 2002 and 2005, the
inward and outward cascades are considerably imbalanced compared to other years, which
remains unexplained. The authors note that the cascade of outward propagating energy is
consistently the dominant component. Hydrodynamic values (dashed black), showing the
contribution due to velocity fluctuations alone, are also plotted for reference.
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Chapter 7

Advanced Heating Test

The analyses of MacBride et al. (2005) and MacBride et al. (2008) described in Chapter 6
provide important first steps in applying third-moment theory to solar wind turbulence. Both
analyses show that third-moment expressions follow the linear scaling with lag indicative of
a turbulent energy cascade in the solar wind and that ǫ computed from these expressions
are roughly on the order of expected heating rates at 1AU. Neither analysis demonstrates
the degree to which computed ǫ compare to local heating rates in the solar wind.

In Stawarz et al. (2009), we build on the analysis of MacBride et al. (2008) to perform
two main tasks: 1) we implement improved error analysis techniques to examine the conver-
gence of third-moment estimates of ǫ within the solar wind and 2) quantitatively compare
ǫ computed via third-moment expressions to proton heating rates inferred from the radial
temperature gradient of the solar wind (see Section 3.7).

The following basic analysis technique is used in this study. We first access a large volume
of merged magnetic field and thermal proton data from the ACE spacecraft. This is the same
data used by MacBride et al. (2008), but extended to include more recent years. We use
10 years of ACE data from day 23 of 1998 through day 15 of 2008 encompassing both solar
maximum and solar minimum behavior. Second, we divide the large volume of data into
subsets that are comparable in duration to a correlation length for interplanetary turbulence
at 1AU. For the convergence analysis, we analyze both 12 hr subsets and the 48 hr subsets
used by MacBride et al. (2008). Based on the results of the convergence analysis, we use only
the 12 hr subsets in the subsequent heating rate analysis. Third, for each subset we compute
estimates of the various structure functions described in Chapter 5, as well as averages of
VSWTP for use in the application of Eq. (3.25). As the length of the subsets are comparable to
a correlation length, each subset provides a statistically independent sample of the underlying
ensemble which is critical to a proper uncertainty analysis. All quantities that derive from a
single subset are considered to be without intrinsic uncertainty as measurement uncertainties
are small when compared with the statistical spread in the observations. Fourth, we average
over many subsets and apply traditional uncertainty analyses. Last, in the case of structure
functions, we perform an uncertainty-weighted average over lags within the inertial range to
compute an average energy cascade rate.

7.1 Convergence of Third-Order Structure Functions

In order to demonstrate the rate of convergence of third-order structure functions, we perform
the following analysis. We apply the formalism for the hybrid cascade shown in Section 5.3
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Figure 7.1: (top) Mean 〈D3(L0)〉 and uncertainty σD3
from hybrid MHD analysis at

L0 = 1.6 × 106 km (τ = 4032 s). Red squares denote all data. Black circles denote re-
moval of transients. (middle) Relative uncertainty in same. (bottom) Function D3(L)/L for
hybrid MHD (solid) and hydrodynamic (dashed) calculations with example uncertainties for
transient removal with best convergence (N = 3094). Figure reproduced from Stawarz et al.
(2009).
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to several years of ACE data starting with day 360 of 1999. We use 12 hr and 48 hr samples
to compute estimates of the third-moments D±

3,⊥(τ) and D±
3,‖(τ) from Eq. (5.34) and (5.35).

Estimates from different samples are averaged together using the interpolation method
described in Chapter 6. Uncertainties associated with these averages are computed in the
usual manner (Bevington, 1969):

σ2
X ≡ (1/N)

{〈

X2
〉

− 〈X〉2
}

(7.1)

where 〈...〉 denotes an unweighted average over 12 or 48 hr intervals, σX is the error-of-the-
mean for any quantity X, and X is any quantity averaged over many intervals. The estimate
of σX permit us to determine the statistical significance of the measured average of VSWTP

or any of the third-moment functions. The uncertainty analysis for the latter is computed
as a function of lag L.

As an example, we show results for the total hybrid structure function D3 defined in
Eq. (5.30). Figure 7.1 (top) demonstrates that D3 requires a considerable amount of data to
achieve statistical convergence. Figure 7.1 plots the mean and estimated uncertainty 〈D3〉
and σD3

for the single value of lag L = L0 = 1.6 × 106 km for two separate analyses of the
ACE data. Both analyses begin at the start of year 2000. In the first analysis (red) all
data is used. In the second analysis (black), we remove transient data. This is done by
accessing the ACE shock list maintained by the ACE Science Center and excluding all 12 hr
analysis intervals that fall anywhere on or within the interval starting 12 hrs upstream of
the shock and ending 36 hrs downstream of the shock. This removes considerable amounts
of data during solar maximum, but guarantees removal of foreshock, shock, and driver gas.
At each step in the analysis, an additional three solar rotations of data is incorporated. The
plot shows the computed convergence in the sense of “diminishment of error” of the third-
moment calculation for ǫL at L0 = 1.6× 106 km (or, 0.01AU corresponding to a time lag of
τ = 4032 s or ∼ 67min and a mean wind speed V = 400 km/s) using the hybrid geometry
analysis plotted vs. the number of 12 hr samples used in the average. This is a lag within
the expected inertial range. Because of transient removal, the black curve always uses fewer
12 hr samples. Clearly, inclusion of transients results in a significantly higher computed D3

and associated cascade rate ǫ than when transients are removed. Since transients contain
shocks, which are strong compressive signatures far outside the realm of this theory; and
driver gas often contains magnetic clouds with strong rotations of the mean IMF, which
yield significant signatures in D3, the exclusion of transients gives a better estimation of the
heating rate of undisturbed solar wind. Also, the Vasquez et al. (2007) analysis, which leads
to Eq. (3.25), does not include transients. To what extent the analysis including transients
is useful or offers a meaningful assessment of heating rates under these conditions is unclear
at the present time.

Figure 7.1 (middle) plots the relative uncertainty for the same value of L. It is curious
that the analysis including transient data converges more rapidly than the analysis omitting
transients, but nevertheless the latter gives a clear indication of how much data is required
to obtain convergence in this analysis. The general rate of convergence is consistent with
Podesta et al. (2009) which finds that for both 64 s resolution solar wind data and 40ms
resolution wind tunnel data, approximately one million data points are required to reduce
the relative uncertainty to below 30%.

Figure 7.1 (bottom) plots D3(L)/L as a function of lag where D3 is again summed over ‖,
⊥ and out/in components so as to obtain the form of D3 relevant to the total energy cascade.
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Figure 7.2: Reanalysis of Figure 7.1 (middle) including transient data using 48 hr subinter-
vals. Figure reproduced from Stawarz et al. (2009).

Statistical uncertainties are plotted for several example lags. The function is approximately
constant over most of the range of lag values.

Because of issues relating to mean field convergence (Matthaeus and Goldstein, 1982b),
we have experimented with longer intermediate subintervals than the 12 hr subsets described
above. We do not mean to claim that this together with a stationarity test will prove
unsuccessful, but we offer the following demonstration as evidence of what can go wrong with
analyses using long intermediate time scales. We recompute the summed hybrid structure
function D3(L0) as demonstrated in Figure 7.1 using 48 hr subintervals and examine the same
L0 = 1.6 × 106 km lag. Figure 7.2 shows the result of this effort. The analysis is extremely
vulnerable to transient observations that can reset the convergence of the computed third-
moment. While the 12 hr analysis changes when transients are included or excluded, both
analyses show convergence as additional data is added. This is not the case with the 48 hr
analysis.

7.2 Energy Cascade vs. Heating Rates

Following the analysis above, we take 12 hrs to be our intermediate time scale over which
individual estimates of the structure functions defined in Chapter 5 are computed. We
compute the mean value of VSWTP for each 12 hr subset and group the samples into seven
bins based on this value. Uncertainties are again computed as above. Eq. (3.25) is evaluated
from the mean and standard deviation of 12 hr values for VSWTP within each bin to produce
a mean value of 〈ǫheat〉 and associated error-of-the-mean according to Eq. (7.1). Figure 7.3
plots 〈ǫheat〉 as accumulated into the seven overlapping bins of VSWTP . Horizontal bars
denote the standard deviation for values of 〈VSWTP 〉 within each bin. Vertical bars denote
errors-of-the-means for computed ǫheat.

We compute third-moment estimates of ǫ using the isotropic and hybrid MHD forms,
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Figure 7.3: Comparison of total energy cascade for hydrodynamic and multi-dimensional
MHD cascades vs. expected heating rates for protons as computed by Vasquez et al. (2007).
(top) Uses all ACE data during the 10 yr period. (bottom) Removes transient events to use
remaining data subset of 10 yr period. Hydrodynamic results for first two bins are off scale.
Figure reproduced from Stawarz et al. (2009).

as well as, the hydrodynamic expression as described above with one addition: We average
over all lags to compute an average value of ǫ within the inertial range. While ǫ is expected
to be constant for all inertial range lags, some variability is observed and estimates derived
for short lags via the hybrid analysis can be especially poor with large uncertainties. For
this reason, we use an uncertainty-weighted average of D3(L)/L and the associated error-
of-the-mean σǫ to compute the mean rate of energy cascade and its associated uncertainty
(Bevington, 1969):

ǫ = G

{

∑

L

{

[D3(L)/L] /
[

σ2
D3(L)/L

2
]}

}{

∑

L

[

1/
(

σ2
D3(L)/L

2
)]

}−1

(7.2)

σǫ =

{

∑

L

[

1/
(

σ2
D3(L)/L

2
)]

}−1/2

(7.3)

where σ2
D3(L) is defined in Eq. (7.1). The constant G is dependent on the geometry and
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dynamics so that for isotropic hydrodynamics GHD = 5/4, for isotropic MHD GISO = 3/4,
for the perpendicular cascade in the hybrid MHD expression G⊥ = 1/2, and for the parallel
cascade in the hybrid MHD expression G‖ = 1/4. These constants can be extracted simply
from the expressions in Chapter 5. We apply this formalism to the isotropic and hybrid
MHD and hydrodynamic expressions and plot the results in Figure 7.3.

Figure 7.3 (top) shows a strong divergence between the Vasquez et al. (2007) and third-
moment formalisms. While differences between computed cascade rates and the energy
required to heat thermal protons is a factor of two for small values of VSWTP , it grows to
8× for larger values. This is too much discrepancy to be acceptable, and we must consider
the role of transients in the calculation.

Figure 7.3 (bottom) plots the recomputed values of ǫ derived from the Vasquez et al.
(2007) analysis and the third-moment formalism as described above with shocks and asso-
ciated driver gas removed. The results show a consistent excess of energy within the MHD
cascade as compared to the proton heating rate ǫheat. The only exception to this is the lowest
VSWTP bin where both the isotropic and hybrid MHD expressions yield cascade rates lower
than the Vasquez et al. (2007) prediction. Although the excess is small (factor of ∼50%), it
is statistically significant at better than the 5σǫ level.

In both analyses shown in Figure 7.3, we see that the isotropic and hybrid MHD forms
give similar total cascade rates (MacBride et al., 2008), but these values differ significantly
and systematically from the hydrodynamic expression.

7.3 Heating Discussion

Figure 7.4 (top) shows the ratio of ǫ/ǫheat where ǫ is computed from the various hydrodynamic
and MHD structure function expressions. Three conclusions are immediately apparent: First,
the computed hydrodynamic cascade systematically underestimates the MHD cascade at
low values of VSWTP and approaches the MHD predictions asymptotically for high values.
Second, the MHD cascade is less than ǫheat at the lowest values of VSWTP . Third, the MHD
cascade is systematically greater than ǫheat at all but the lowest values of VSWTP . Table 7.1
reproduces the values shown in Figure 7.4 (top).

We return now to the analysis of Vasquez et al. (2007). Two issues are addressed there
which we must now consider in light of the above results. First, the gradients of TP were
measured in bins of VSW that included both hot and cold plasma observations. The colder
winds may be characterized by less heating than average. In fact, Freeman and Lopez (1985)
show that ∼ 10% of Helios data are slow, very cold winds that can be explained by an almost
adiabatic expansion of the plasma. Therefore, where VSWTP is small in Figure 7.4 (top),
Eq. (3.25) could overestimate the true proton heating. This suggests that the heating rate
as measured by the MHD cascade rate may be correct.

Second, the radial gradients of TP and the resulting Eq. (3.25) of this paper are based
only on the radial component of TP as measured by ACE. Vasquez et al. (2007) shows
that radial gradients of the projections of the solar wind thermal anisotropy onto the radial
component (allowing for both changing anisotropy and rotation of the distribution with
the IMF spiral) leads to significant differences between the radial gradient of the radial
component of the temperature and the radial gradient of the average temperature. Taking
this into consideration, Vasquez et al. (2007) determine that Eq. (3.25) which defines ǫheat

underestimates the actual proton heating at 1AU by a factor of 22%. We therefore consider
estimates of ǫheat in Figures 7.3 and 7.4 (top) that are increased by 22%. This increase in
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Figure 7.4: (top) Ratio of ǫ from the structure function method for hydrodynamics and
MHD to ǫheat from the Vasquez et al. (2007) analysis of thermal protons. Analysis removes
transients. Hydrodynamic result for first bin is off scale. (bottom) Difference of ǫ and ǫheat

with transients removed using a worst-case factor of 1.22. Result predicts amount of energy
cascade available for heating heavy ions and electrons. Figure reproduced from Stawarz et
al. (2009).

Table 7.1: Computed ǫ/ǫheat for ACE data with transient removal. Table reproduced
from Stawarz et al. (2009).

VSWTP ǫ/ǫheat

[×107 (km/s)K] Hydrodynamics Isotropic MHD Hybrid MHD
1.3 ± 0.4 −0.0013 ± 0.015 0.77 ± 0.06 0.72 ± 0.08
2.0 ± 0.5 0.09 ± 0.02 1.17 ± 0.06 1.41 ± 0.08
2.9 ± 0.6 0.30 ± 0.02 1.35 ± 0.06 1.99 ± 0.08
4.9 ± 1.4 0.59 ± 0.01 1.07 ± 0.03 1.41 ± 0.03
7.0 ± 2.2 0.68 ± 0.01 1.16 ± 0.02 1.47 ± 0.02
12.2 ± 3.8 0.92 ± 0.02 1.51 ± 0.02 1.70 ± 0.03
16.4 ± 4.3 1.00 ± 0.03 1.60 ± 0.03 1.64 ± 0.04
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Table 7.2: Computed ǫ − 1.22ǫheat for ACE data with transient removal. Table reproduced
from Stawarz et al. (2009).

VSWTP ǫ − 1.22ǫheat [Joules/kg-s]
[×107 (km/s)K] Hydrodynamics Isotropic MHD Hybrid MHD

1.3 ± 0.4 −570. ± 9. −218. ± 29. −241. ± 38.
2.0 ± 0.5 −829. ± 13. −39. ± 46. 137. ± 48.
2.9 ± 0.6 −960. ± 20. 138. ± 63. 795. ± 80.
4.9 ± 1.4 −1110. ± 27. −264. ± 46. 334. ± 57.
7.0 ± 2.2 −1355. ± 35. −161. ± 46. 634. ± 55.
12.2 ± 3.8 −1326. ± 80. 1288. ± 94. 2110. ± 103.
16.4 ± 4.3 −1313 ± 158. 2261. ± 188. 2484. ± 205.

ǫheat is not sufficient to equate ǫheat with the rates obtained by the third-moment analyses.
The measured cascade rates using D3 for MHD still exceed the proton heating rates for all
but the lowest values of VSWTP .

The best case argument for where the excess energy goes is made in the limit of high
VSWTP . Winds of all speeds contribute here whenever they possess high TP ∼ 2− 3× 105 K.
Moreover, nearly all high-speed streams contribute to the upper bins of VSWTP because
they nearly always have both large VSW and large TP . The computed excess in the energy
cascade in the highest two VSWTP bins is 50 − 70%. Increasing ǫheat by 22% reduces the
excess to 25− 50%. While heavy ions may absorb some of this energy, there are no spectral
signatures associated with heavy ion resonances. Also, Reisenfeld et al. (2001) argue that
in situ heating of alphas comes from the deceleration of their differential streaming relative
to protons. This is strongest in high-speed winds, which are hot winds, leaving open the
possibility that some significant alpha heating via the cascade is active for intermediate
values of VSWTP . We contend that most of the computed excess in the energy cascade goes
to heating electrons. Leamon et al. (1999) argue that damping of waves at the Landau
resonance is possible in many cases at scales comparable to the dissipation scale where the
magnetic spectrum breaks (0.1 to 0.5Hz). In their model, electron heating is accomplished
by obliquely propagating proton cyclotron waves and approximately 40% of the cascading
energy heats electrons (or 2/3 of the energy heating protons). Leamon et al. (1998) and
Hamilton et al. (2008) argue that spectral characteristics in the dissipation range support
the claim that 25 − 40% of the energy cascade goes into dissipation processes other than
proton cyclotron resonance and electron heating either by cyclotron, transit time, Landau
damping or current sheet formation. This places an upper bound on electron heating at
1/3 to 2/3 the proton heating rate which is consistent with our conclusions based on the
excess cascade energy when compared to the observed local heating rate of protons. Gary
et al. (2008) and Saito et al. (2008) argue that a cascade of whistler mode energy can be
established at scales much smaller than the proton inertial length. This cascade is not strictly
energy-conserving since the modes are Landau resonant with thermal electrons, but it does
represent transport of magnetic energy to smaller scales (and perpendicular wave vectors)
in association with electron heating. It is possible that the remainder of the energy cascade
that is not used to heat thermal protons is thereby used to heat electrons.

In order to quantitatively address the heating of heavy ions and electrons, we compute
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Figure 7.5: Anisotropy of velocity AV and magnetic AB fluctuations, angle between mean
magnetic field and radial direction ΘBR, velocity fluctuation energy EV and magnetic fluctu-
ation energy EB. All values are computed as means of r.m.s. values for 12 hr intervals. Uncer-
tainties are generally smaller than symbols used in plotting. Figure reproduced from Stawarz
et al. (2009).

the excess energy in the cascade relative to the rate of proton heating derived from the
radial gradient of proton temperatures. Figure 7.4 (bottom) adopts the factor of 1.22 on
ǫheat and computes the remaining energy that can be extracted from the cascade. As we
have already seen, the hydrodynamic expression produces too little energy in the cascade to
explain the heating of thermal protons. The lowest bin also contains too little energy cascade
for the MHD expressions, but as discussed above this is probably because the expected
proton heating is an overestimate for this bin. At intermediate values of VSWTP , we find,
on average, there is an excess in the MHD energy cascade (both isotropic and hybrid) of
∼ 500 Joules/kg-s that is available for heating of heavy ions and electrons. For the largest
values of VSWTP , the energy excess is ∼ 2000 Joules/kg-s. Table 7.2 lists the values plotted
in Figure 7.4 (bottom).

In an effort to understand why the hydrodynamic expression possesses the asymptotic
behavior seen in Figure 7.4, we compute several r.m.s. averages of the data: The kinetic
and magnetic energy (EV and EB, respectively) and the velocity and magnetic anisotropy
relative to the radial (flow) direction (AV and AB, respectively) as defined by the fluctuation
energy in the previously defined T and N components summed and divided by the energy
in the R component. The reader will recall that the hydrodynamic expression uses the R
component only. We also average the angle between the mean magnetic field and the radial
direction ΘBR. Figure 7.5 shows the results of these averages binned by VSWTP . The bulk
anisotropy of the velocity fluctuations is 2.1 < AV < 2.6 where AV = 2 denotes isotropy,
so the observed behavior for ǫHD is unaffected by a hypothetical anisotropy in the velocity
fluctuations. The bulk anisotropy of the magnetic fluctuations is larger, in apparent support
of the hybrid geometry approximation and adding complication to the isotropic analysis.
Both the kinetic energy EV and the magnetic energy EB rise consistently with the difference
being approximately constant. The ratio EV /EB decreases slightly with increasing VSWTP

in mild support of a convergence of ǫMHD/ǫHD, but not to the degree seen in Figure 7.4 (top).
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This does not support the result shown in Figure 7.4 (bottom) where the difference between
computed values of ǫMHD and ǫHD increases with VSWTP . Likewise, the average value of ΘBR

is virtually constant at ∼ 41◦ with a standard deviation of ∼ 15◦ for each bin. This indicates
that the product VSWTP is dominated by the factor of ∼ 10 variation of TP and not the
factor of 2 variation of VSW . Each VSWTP bin contains both fast and slow winds. There
is no support for the claim that rotation of the IMF alters the measured correlations in a
manner that might alter the measured ǫ. We can only conclude that there are significant
changes in the correlations including phase that occur as VSWTP increases, as this is the
central idea in the third-moment formalism. Moreover, it points to an important reason why
estimates of ǫ based on the power spectra alone seem to fail at 1AU.

7.3.1 A Small Correction

Over the course of performing the analysis described in Chapter 9, a small error in the
selection of 12 hr intervals in the above analysis was uncovered. The error pertains to the
selection of intervals with adequate data coverage to effectively perform the third-moment
analysis and merely results in the rejection of additional intervals which would otherwise be
considered good candidates. Figure 9.7 revises the analysis in the bottom panel of Figure 7.3
as it pertains to the large-scale shear analysis of Chapter 9. The isotropic formalism is shown
in blue and proton heating rates are shown in black. The red points pertains to the shear
analysis and are not pertinent to this discussion. The isotropic cascade rates shift by an
amount greater than 1 error-of-the-mean. In particular, the second and third points from
the left, which are above the proton heating rate in Figure 7.3, now lay below ǫheat. Note,
some of this variability is the result of additional selection criteria necessary for the shear
analysis and this plot is only referred to for demonstration purposes. We have re-performed
the exact analysis present in this chapter, and the results are similar to those in this figure.

Even with this slight modification, the conclusions of this chapter are unaffected. Recall
that proton heating rates computed from Eq. (3.25) are expected to overestimate the true
heating rate a lower VSWTP and the higher VSWTP cascade rates in this analysis remain
relatively unaffected. While not shown, the conclusions of the hybrid analysis are likewise
unchanged.
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Chapter 8

High Cross-Helicity

We further build on the analyses of MacBride et al. (2005, 2008) and Stawarz et al. (2009)
described in the previous two chapters, whose application and extension of the ideas of
Politano and Pouquet (1998a,b) has led to the following results: 1) Demonstration that
a scale-independent cascade rate exists within the inertial range of solar wind fluctuations
at 1AU; 2) Energy cascade rates in good agreement with the inferred heating rates of the
solar wind; and 3) Energy cascades perpendicular to the mean magnetic field direction in
high-speed winds in agreement with simulations that require the asymptotic state of the
turbulence to approach a 2D (perpendicular wave vector) geometry.

The Stawarz et al. (2009) study, from the previous chapter, sorts data based on one
parameter that should relate to the energy cascade rate: the proton heating rate. Another
parameter on which ǫ depends is the cross-helicity, which turbulence theory predicts will
“throttle” the rate of energy cascade. In this study (Stawarz et al., 2010), we analyze the
dependence of ǫ on cross-helicity in the solar wind and uncover an unusual process in intervals
of “high” cross-helicity. This analysis technique is also explored in a less in depth fashion in
Smith et al. (2009).

We analyze the same 10 yrs of ACE spacecraft magnetic field and plasma data from the
analysis of the previous chapter. This data spans from 1998 through 2007 and we again
divide this into 12 hr intervals. The same basic procedure from Chapters 6 and 7 is used for
computing third-moment expressions (MacBride et al., 2008; Stawarz et al., 2009).

8.1 Cross-Helicity

The average energy per unit mass in incompressible kinetic and magnetic fluctuations within
a given 12 hr interval is:

E ≡ 1

2

(

1

N

∑

i

[

(δv)2 + (δB)2
]

)

(8.1)

=
1

4

(

1

N

∑

i

[

(δZ+)2 + (δZ−)2
]

)

(8.2)

where
∑

i represents the sum over N points, one for each 64 s within the 12 hr interval.
Here, and for the purposes of this chapter, we redefine the magnetic field in Alfvén units
BA ≡ B/

√
µ0ρ and for convenience drop the superscript A. From Eq. 8.1 and 8.2, we identify

〈(δZ+)2〉/4 as the energy in fluctuations propagating anti-parallel to the mean magnetic field,
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and 〈(δZ−)2〉/4 as the energy in parallel-propagating fluctuations. The difference between
the two energies is called the cross-helicity HC . Within a given interval HC is the cross-
correlation between magnetic and velocity fluctuations. The average cross-helicity within a
given interval can be written as:

HC ≡ 1

N

∑

i

[δv · δB] (8.3)

=
1

4

(

1

N

∑

i

[

(δZ+)2 − (δZ−)2
]

)

. (8.4)

The amount of cross-helicity that can be supported by the turbulence is limited by the
energy. Therefore, we can normalize HC according to energy:

σC ≡ HC/E (8.5)

so that the following relationship holds:

−1 ≤ σC ≤ +1. (8.6)

The normalized cross-helicity σC describes the amount of imbalance between the fluctua-
tions propagating in different directions: when σC = ±1, fluctuations are completely in one
direction, and when σC = 0, they are “balanced” with equal energy content in the two prop-
agation directions. We show in this chapter that the energy cascade rate deduced from the
third-moment of the fluctuations, depends on σC , as well as, on the total energy in fluctua-
tions. When |σC | = 1 the turbulence has maximum cross-correlation between the two fields
and the non-linear terms that constitute the turbulent evolution are zero. It is not unusual
for the solar wind to have large |σC |, but the correlation is never perfect and at worst the
turbulent cascade is expected to be sluggish as a result. Each 12 hr interval of ACE data is
then characterized by a pair of values E and σC .

Just as the total rate of energy cascade is written as ǫT = (ǫ+ + ǫ−)/2 (see Eq. (5.13)),
the cross-helicity cascade rate is written as:

ǫC =
(

ǫ+ − ǫ−
)

/2 (8.7)

Furthermore, a normalized cross-helicity rate of cascade is given by ǫσC = (ǫ+−ǫ−)/(ǫ++ǫ−).
In the analyses presented in this chapter, we again use Zout/in instead of Z± in accordance

with the direction of fluctuation propagation. As such, we continue to refer to Dout
3 , Din

3 ,
ǫout, and ǫin as seen in previous chapters. The cascade of cross-helicity is no different. Since
the sign of HC changes with the mean field direction, we risk simple cancellation if we
add measurements from toward and away sectors. Therefore, we redefine the cross-helicity
as the difference between outward and inward propagating components and the cascade of
cross-helicity is given by ǫC = 1

2
(ǫout − ǫin). The normalized cross-helicity rate of cascade is

ǫσC = (ǫout − ǫin)/(ǫout + ǫin). All of this is designed to avoid simple cancellation due to field
reversals that would result in HC = 0 even though |HC | > 0 in most instances.

8.2 Isotropic Analysis

Figure 8.1 shows the distribution of fluctuation energy computed by Eq. 8.1 for 12 hr samples
using the stated 10 yrs of data. The purpose of this analysis is to determine how ǫ± depends
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Figure 8.1: Distribution of magnetic and kinetic fluctuation energy for 12 hr samples grouped
in 200 km2/s2 bins as defined by Eq. 8.1. There are 4625 samples in the distribution after
eliminating shocks and transients. Figure reproduced from Stawarz et al. (2010).

upon E and σC in the solar wind. Kolmogorov scaling implies ǫT ∼ E3/2 (Kolmogorov,
1941a), but the application of this concept to MHD turbulence leads to a dependence upon
σC that is unknown. We select three energy intervals represented by arrows in the figure
and four intervals of cross-helicity. Table 8.1 lists these energy and helicity ranges along
with the number of 12 hr samples obtained for each. In this analysis, we use the isotropic
MHD formalism described in Section 5.2. The resulting estimates for D

in/out
3,ISO are shown in

Figure 8.2. Note that each curve is to a fair approximation a straight line indicating that the
energy cascade rate ∼ D

in/out
3,ISO /(VSWτ) is constant at all scales. Table 8.1 lists the computed

energy cascade rates for each component.
What we see consistently in Figure 8.2 is that the energy cascade rate of the major-

ity outward-propagating component (blue) decreases with increasing σC until it becomes
negative while the minority inward-propagating component (red) decreases, but remains
positive. We see this same behavior in all three energy subsets, but greater values of σC

must be reached for the more energetic intervals before the reversal is obtained.
Figure 8.3 (top) plots the energy cascade rate for the outward propagating and inward

propagating components as well as total energy and cross-helicity cascade rates. Note that
as inferred above, the energetically dominant outward-propagating component possesses the
greatest energy cascade rate at low values of |σC |, but that the cascade rate decreases and
becomes negative at large values of |σC |. This results in a negative rate of energy cascade
for the total energy when |σC | is sufficiently large. As suggested above, ǫin remains positive.
Note: when data is selected without regard for |σC | the total energy cascade rate for each of
the three energy subsets is 824 ± 27, 2273 ± 36, and 6099 ± 102 J/kg-s, respectively, with
both outward and inward propagating components showing positive energy cascade.

Table 8.2 lists several quantities derived from Figure 8.2 and Table 8.1. The first is the
ratio of the energy cascade rate for outward propagation to energy cascade rate for inward
propagation ǫout/ǫin. The second quantity is the cascade rate for the cross-helicity and the
third quantity is the normalized cascade rate for the cross-helicity defined above. Figure 8.3
(middle) shows the ratio ǫout/ǫin as a function of |σC |. At low values of |σC |, the ratio ǫout/ǫin

increases with energy. It appears that for low to intermediate values of |σC | the ratio ǫout/ǫin

increases with increasing |σC |, but as ǫout turns negative the ratio turns negative as well. The
lowest energy bin fails to show this behavior because the negative cascade regime begins at
relatively low values of |σC |. At large |σC | the value of |ǫout| significantly exceeds ǫin and
is the dominant term in the cascade, leading to |ǫout/ǫin| > 1. Figure 8.3 (bottom) plots
ǫσC . Omitting one point in the first panel that occurs when ǫT ≃ 0 (the denominator in
Eq. 8.5) there is a general trend to larger (positive, > 1) cascade rates for the normalized
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Figure 8.2: Computed values for D3,ISO according to Eq. 5.17 using 12 hr samples and 10
years of data. Vertical columns represent the three energy ranges shown in Figure 8.1.
Horizontal rows are four helicity ranges. Blue (red) marked with triangles (squares) denote
outward (inward) propagation. Black middle curve marked by circles is DT

3,ISO. Sample error
bars are shown. See Table 8.1 for details. Figure reproduced from Stawarz et al. (2010).
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Figure 8.3: (top row) Signed cascade rate computed by averaging over all lags in isotropic
geometry analysis. Blue triangles represent outward propagating energy cascade, red squares
are inward propagating energy cascade, black circles give total energy cascade, and green
inverted triangles represent the cross-helicity cascade. (middle row) Ratio of rate of cascade
for outward propagating fluctuations over rate of cascade for inward propagating fluctuations.
(bottom row) Ratio of helicity cascade rate to total energy cascade rate ǫσC . See Tables 8.1
and 8.2. Figure reproduced from Stawarz et al. (2010).
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Table 8.1: Cascade statistics from isotropic geometry Figure 8.2. Table reproduced
from Stawarz et al. (2010).

Energy Range |σC | Range # ǫout
iso ǫin

iso ǫT
iso

[(km/s)2] Samples [×103 Joules/kg-s]
1200 − 2800 0.00 < |σC | < 0.50 455 4.28 ± 0.10 2.45 ± 0.09 3.36 ± 0.07
1200 − 2800 0.50 < |σC | < 0.75 581 −0.85 ± 0.06 1.14 ± 0.05 0.19 ± 0.04
1200 − 2800 0.75 < |σC | < 0.85 340 −2.85 ± 0.05 0.39 ± 0.02 −1.23 ± 0.03
1200 − 2800 0.85 < |σC | < 1.00 135 −2.67 ± 0.07 0.16 ± 0.02 −1.25 ± 0.04
2400 − 4400 0.00 < |σC | < 0.50 239 12.94 ± 0.20 5.77 ± 0.15 9.35 ± 0.13
2400 − 4400 0.50 < |σC | < 0.75 306 5.57 ± 0.13 1.47 ± 0.07 3.52 ± 0.08
2400 − 4400 0.75 < |σC | < 0.85 310 −1.67 ± 0.09 0.69 ± 0.03 −0.49 ± 0.05
2400 − 4400 0.85 < |σC | < 1.00 373 −3.24 ± 0.05 0.31 ± 0.01 −1.47 ± 0.03
5000 − 8000 0.00 < |σC | < 0.50 52 38.21 ± 1.02 11.98 ± 0.83 24.37 ± 0.66
5000 − 8000 0.50 < |σC | < 0.75 94 31.38 ± 0.56 3.38 ± 0.27 17.29 ± 0.31
5000 − 8000 0.75 < |σC | < 0.85 127 6.54 ± 0.27 2.06 ± 0.12 4.39 ± 0.15
5000 − 8000 0.85 < |σC | < 1.00 285 −1.97 ± 0.12 0.69 ± 0.02 −0.66 ± 0.06

Table 8.2: Cascade statistics derived from isotropic geometry Figure 8.2. Table reproduced
from Stawarz et al. (2010).

Energy Range |σC | Range ǫout
iso /ǫin

iso ǫC ǫσC

[(km/s)2] [×103 Joules/kg-s]
1200 − 2800 0.00 < |σC | < 0.50 1.75 ± 0.08 0.91 ± 0.07 0.27 ± 0.02
1200 − 2800 0.50 < |σC | < 0.75 −0.74 ± 0.06 −0.99 ± 0.04 −6.84 ± 1.71
1200 − 2800 0.75 < |σC | < 0.85 −7.21 ± 0.40 −1.62 ± 0.03 1.32 ± 0.04
1200 − 2800 0.85 < |σC | < 1.00 −16.34 ± 2.20 −1.42 ± 0.04 1.13 ± 0.04
2400 − 4400 0.00 < |σC | < 0.50 2.24 ± 0.07 3.58 ± 0.13 0.38 ± 0.01
2400 − 4400 0.50 < |σC | < 0.75 3.80 ± 0.21 2.05 ± 0.08 0.58 ± 0.02
2400 − 4400 0.75 < |σC | < 0.85 −2.42 ± 0.16 −1.18 ± 0.05 2.41 ± 0.25
2400 − 4400 0.85 < |σC | < 1.00 −10.42 ± 0.51 −1.77 ± 0.03 1.21 ± 0.03
5000 − 8000 0.00 < |σC | < 0.50 3.19 ± 0.24 13.11 ± 0.66 0.52 ± 0.03
5000 − 8000 0.50 < |σC | < 0.75 9.29 ± 0.77 14.00 ± 0.31 0.81 ± 0.02
5000 − 8000 0.75 < |σC | < 0.85 3.18 ± 0.23 2.24 ± 0.15 0.52 ± 0.04
5000 − 8000 0.85 < |σC | < 1.00 −2.87 ± 0.20 −1.33 ± 0.06 2.07 ± 0.22
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Figure 8.4: Examples of wind speed and σC for 2 two-week periods. The high |σC | occurs
in solar wind regions isolated from shear and can occur in relatively slow wind and during
solar maximum. Figure reproduced from Stawarz et al. (2010).

cross-helicity when |σC | is large. It never exceeds several times the rate of total energy
cascade, but is ≪ 1 when |σC | is small.

Figure 8.4 shows two time series with typical examples of high |σC | states. The first
example is a fast wind from solar minimum that follows a CIR with significant separation
and precedes a rarefaction region by a similar spacing. This is the classic high |σC | state
reported by Belcher and Davis (1971). We contend, as does Roberts et al. (1987), that this is
a region of low shear where little driving of new turbulent energy is present. In contrast, the
CIR and rarefaction region are likely areas where the turbulence is “stirred”. The high |σC |
intervals shown here come from all three energy ranges studied in Figure 8.2. The second
example is from near solar maximum and focuses on an interval where the solar wind never
achieves what is normally considered a fast wind speed. There is a shock early in the interval
followed by a current sheet crossing and a stream interface late in the interval, but between
these transients (from day 349 to 353) there is an extended region of isolated flow without
apparent sources of shear in which the value of |σC | is consistently high. Not all intervals
with high |σC | are fast streams, but they do tend to be isolated flows removed from regions
of strong shear.

8.3 Hybrid Analysis

Figure 8.5 shows the results of our analysis using the hybrid formalism of Section 5.3. The
color convention from Figure 8.2 continues with dashed lines representing the 1D (parallel)
component and solid lines representing the 2D (perpendicular) component. (Note that a
factor of 2 difference exists between the conversion of D3 to ǫ that favors the 2D cascade:
If D3,⊥ = D3,‖ then ǫ⊥ = 2ǫ‖ and the cascade is effectively isotropic.) While we again ob-
serve elements of D3 turning negative as |σC | increases, it is again the outward-propagating
component (blue) that is most negative while the inward-propagating component (red) re-
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Figure 8.5: Same as in Figure 8.2 except solid curves are 2D analysis and dashed curves are
1D analysis. Sample error bars are again shown. Note that low sample numbers can lead
to large uncertainties and functions that deviate from linearity when isotropic expression
is further divided into 1D/2D hybrid expressions. Figure reproduced from Stawarz et al.
(2010).
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Table 8.3: Out and in cascade statistics from Figure 8.5 for 2D and 1D components. Table
reproduced from Stawarz et al. (2010).

Energy Range |σC | Range ǫout
2D ǫin

2D ǫout
1D ǫin

1D

[(km/s)2] [×103 Joules/kg-s] [×103 Joules/kg-s]
1200 − 2800 0.00 < |σC | < 0.50 2.23 ± 0.08 1.01 ± 0.08 2.38 ± 0.14 3.01 ± 0.12
1200 − 2800 0.50 < |σC | < 0.75 −0.45 ± 0.06 1.05 ± 0.04 −1.09 ± 0.05 0.55 ± 0.04
1200 − 2800 0.75 < |σC | < 0.85 −1.76 ± 0.08 0.53 ± 0.03 −0.97 ± 0.03 −0.10 ± 0.01
1200 − 2800 0.85 < |σC | < 1.00 −0.83 ± 0.10 0.08 ± 0.03 −1.66 ± 0.03 0.14 ± 0.01
2400 − 4400 0.00 < |σC | < 0.50 5.95 ± 0.17 2.97 ± 0.15 8.77 ± 0.24 6.78 ± 0.22
2400 − 4400 0.50 < |σC | < 0.75 4.49 ± 0.14 0.53 ± 0.07 2.11 ± 0.12 0.59 ± 0.08
2400 − 4400 0.75 < |σC | < 0.85 −0.88 ± 0.12 0.86 ± 0.04 −1.07 ± 0.06 0.11 ± 0.02
2400 − 4400 0.85 < |σC | < 1.00 −1.97 ± 0.07 0.53 ± 0.02 −1.69 ± 0.03 0.04 ± 0.01
5000 − 8000 0.00 < |σC | < 0.50 20.89 ± 0.70 3.27 ± 0.55 19.31 ± 0.93 18.68 ± 0.99
5000 − 8000 0.50 < |σC | < 0.75 21.16 ± 0.49 1.02 ± 0.27 16.21 ± 0.52 4.57 ± 0.22
5000 − 8000 0.75 < |σC | < 0.85 7.06 ± 0.36 0.99 ± 0.13 2.47 ± 0.21 0.81 ± 0.07
5000 − 8000 0.85 < |σC | < 1.00 0.25 ± 0.13 0.59 ± 0.03 −1.31 ± 0.06 0.30 ± 0.01

mains positive. D3,‖ (dashed curves) turns more negative than D3,⊥ (solid curves). Again,
higher energy states require higher values of σC before negative cascade rates are observed.
Table 8.3 lists the values of ǫ derived from Figure 8.5.

We now compute more refined quantities. In addition to considering the 1D and 2D
moments and their associated cascade rates separately, we can combine third-moments in a
hybrid manner to get ǫout

hybrid and ǫin
hybrid. Table 8.4 shows these hybrid cascade rates according

to in/out propagation derived from averaging of the third-moments divided by lag. Table 8.5
sums in/out propagation to list cascade rates according to 2D and 1D components. (Note,
the total energy cascade rates in Table 8.5 differ from values in Table 8.4 by 1σ due to
separate averaging of combined third-moment functions.) Table 8.6 computes differences in
individual energy cascade rates to obtain cross-helicity cascade rates according to 2D and
1D components.

Figure 8.6 plots these results. Figure 8.6 (top row) shows the computed energy cascade
rates associated with the functions D3 plotted in Figure 8.5. In general, the energy cascade
for the 2D and 1D components exhibit comparable behavior and are similar to the in/out
results shown in Figure 8.3. The 2D cascade of helicity tends to exceed the 1D cascade
at low |σC | and reverse at high values, but to leading order the cascade of ǫC appears
nearly isotropic in the hybrid analysis. The total cascade rate for outward propagating
fluctuations, inward propagating fluctuations, and total energy (Figure 8.6 2nd row) behaves
in much the same manner as is seen in the isotropic calculation. As seen in the Stawarz
et al. (2009) analysis (Chapter 7), the hybrid calculation yields slightly greater values for
total energy cascade, but the difference is on the order of 10%. For low values of |σC | the
cascade rate for total energy increases with the energy level. A trend for small ǫC cascade
rate evident at low |σC | in the isotropic analysis is more evident here, not because ǫC is
reduced, but because the energy cascade rate of the inward propagating component at high
energy content is elevated. The values of ǫC agree well between the isotropic and hybrid
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Figure 8.6: (top row) Signed energy and helicity cascade rates computed by averaging over
all lags in hybrid model. Blue triangles are outward propagation energy cascade, red squares
are inward propagation energy cascade, green inverted triangles are helicity cascade, solid
lines are 2D component, and dashed lines are 1D component. (second row) Sum of 2D
+ 1D components to yield net energy cascade rates for outward propagating and inward
propagating components along with total energy. Green is total helicity cascade rate. (third
row) Sum of 2D + 1D components to yield the ratio ǫout/ǫin. (fourth row) Sum of outward
propagating and inward propagating components to compute ratio of energy cascade for 2D
geometry over energy cascade for 1D geometry. (bottom row) Ratio of helicity cascade rate
to total energy cascade rate ǫσC . Figure reproduced from Stawarz et al. (2010).
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Table 8.4: Net out and in cascade statistics from hybrid geometry. Table reproduced
from Stawarz et al. (2010).

Energy Range |σC | Range ǫout
hybrid ǫin

hybrid ǫT
hybrid ǫout

hybrid/ǫ
in
hybrid

[(km/s)2] [×103 Joules/kg-s]
1200 − 2800 0.00 < |σC | < 0.50 4.93 ± 0.17 4.03 ± 0.16 4.52 ± 0.12 1.22 ± 0.06
1200 − 2800 0.50 < |σC | < 0.75 −1.39 ± 0.09 1.63 ± 0.06 0.13 ± 0.05 −0.86 ± 0.06
1200 − 2800 0.75 < |σC | < 0.85 −2.80 ± 0.08 0.43 ± 0.03 −1.18 ± 0.04 −6.56 ± 0.48
1200 − 2800 0.85 < |σC | < 1.00 −2.44 ± 0.10 0.27 ± 0.03 −1.08 ± 0.05 −8.95 ± 1.11
2400 − 4400 0.00 < |σC | < 0.50 15.04 ± 0.30 9.94 ± 0.28 12.68 ± 0.21 1.51 ± 0.05
2400 − 4400 0.50 < |σC | < 0.75 6.62 ± 0.19 1.12 ± 0.11 3.94 ± 0.11 5.92 ± 0.61
2400 − 4400 0.75 < |σC | < 0.85 −2.03 ± 0.13 0.99 ± 0.05 −0.50 ± 0.07 −2.04 ± 0.16
2400 − 4400 0.85 < |σC | < 1.00 −3.66 ± 0.08 0.57 ± 0.02 −1.54 ± 0.04 −6.39 ± 0.28
5000 − 8000 0.00 < |σC | < 0.50 41.77 ± 1.22 21.99 ± 1.23 31.97 ± 0.87 1.90 ± 0.12
5000 − 8000 0.50 < |σC | < 0.75 37.55 ± 0.73 5.25 ± 0.35 21.23 ± 0.41 7.15 ± 0.50
5000 − 8000 0.75 < |σC | < 0.85 9.88 ± 0.43 1.81 ± 0.15 5.81 ± 0.23 5.45 ± 0.51
5000 − 8000 0.85 < |σC | < 1.00 −1.19 ± 0.15 0.90 ± 0.03 −0.14 ± 0.08 −1.32 ± 0.17

Table 8.5: Energy cascade statistics from Figure 8.5 for 2D and 1D components. Table
reproduced from Stawarz et al. (2010).

Energy Range |σC | Range ǫT
2D ǫT

1D ǫT
2D/ǫT

1D

[(km/s)2] [×103 Joules/kg-s]
1200 − 2800 0.00 < |σC | < 0.50 1.63 ± 0.06 2.71 ± 0.09 0.60 ± 0.03
1200 − 2800 0.50 < |σC | < 0.75 0.31 ± 0.04 −0.23 ± 0.03 −1.36 ± 0.26
1200 − 2800 0.75 < |σC | < 0.85 −0.61 ± 0.04 −0.54 ± 0.02 1.13 ± 0.08
1200 − 2800 0.85 < |σC | < 1.00 −0.38 ± 0.05 −0.75 ± 0.02 0.50 ± 0.07
2400 − 4400 0.00 < |σC | < 0.50 4.55 ± 0.11 7.87 ± 0.17 0.58 ± 0.02
2400 − 4400 0.50 < |σC | < 0.75 2.52 ± 0.08 1.41 ± 0.07 1.79 ± 0.11
2400 − 4400 0.75 < |σC | < 0.85 0.01 ± 0.06 −0.49 ± 0.03 −0.02 ± 0.13
2400 − 4400 0.85 < |σC | < 1.00 −0.72 ± 0.04 −0.83 ± 0.02 0.87 ± 0.05
5000 − 8000 0.00 < |σC | < 0.50 11.79 ± 0.46 19.11 ± 0.69 0.62 ± 0.03
5000 − 8000 0.50 < |σC | < 0.75 11.08 ± 0.28 10.11 ± 0.29 1.10 ± 0.04
5000 − 8000 0.75 < |σC | < 0.85 4.02 ± 0.19 1.70 ± 0.11 2.37 ± 0.19
5000 − 8000 0.85 < |σC | < 1.00 0.42 ± 0.07 −0.50 ± 0.03 −0.84 ± 0.15
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Table 8.6: Cascade statistics derived from hybrid geometry and Figure 8.5 for cross helicity.
Table reproduced from Stawarz et al. (2010).

Energy Range |σC | Range ǫC
2D ǫC

1D ǫC
hybrid ǫσC

hybrid

[(km/s)2] [×103 Joules/kg-s]
1200 − 2800 0.00 < |σC | < 0.50 0.60 ± 0.06 −0.31 ± 0.09 0.29 ± 0.11 0.10 ± 0.03
1200 − 2800 0.50 < |σC | < 0.75 −0.75 ± 0.04 −0.82 ± 0.03 −1.57 ± 0.05 −12.83 ± 5.68
1200 − 2800 0.75 < |σC | < 0.85 −1.14 ± 0.04 −0.44 ± 0.02 −1.58 ± 0.04 1.40 ± 0.06
1200 − 2800 0.85 < |σC | < 1.00 −0.45 ± 0.05 −0.90 ± 0.02 −1.35 ± 0.05 1.25 ± 0.08
2400 − 4400 0.00 < |σC | < 0.50 1.49 ± 0.11 1.00 ± 0.16 2.48 ± 0.20 0.20 ± 0.02
2400 − 4400 0.50 < |σC | < 0.75 1.98 ± 0.08 0.76 ± 0.07 2.74 ± 0.11 0.71 ± 0.03
2400 − 4400 0.75 < |σC | < 0.85 −0.87 ± 0.06 −0.59 ± 0.03 −1.46 ± 0.07 2.92 ± 0.41
2400 − 4400 0.85 < |σC | < 1.00 −1.25 ± 0.04 −0.86 ± 0.02 −2.11 ± 0.04 1.37 ± 0.04
5000 − 8000 0.00 < |σC | < 0.50 8.81 ± 0.45 0.31 ± 0.68 9.12 ± 0.81 0.31 ± 0.03
5000 − 8000 0.50 < |σC | < 0.75 10.07 ± 0.28 5.82 ± 0.28 15.89 ± 0.40 0.75 ± 0.02
5000 − 8000 0.75 < |σC | < 0.85 3.04 ± 0.19 0.83 ± 0.11 3.87 ± 0.22 0.69 ± 0.05
5000 − 8000 0.85 < |σC | < 1.00 −0.17 ± 0.07 −0.80 ± 0.03 −0.98 ± 0.07 7.29 ± 3.85

analyses. As with the isotropic analysis, the value of ǫC again falls in line with the energy
cascade rates for higher |σC |. We again see the reversal in the cascade rate of the outward
propagating fluctuations at intermediate values of |σC | that leads to a net negative cascade
rate for total energy when |σC | is sufficiently large. The ratio ǫout/ǫin (Figure 8.6 3rd row)
demonstrates this clearly and again behaves in much the same manner as in the isotropic
calculation: |ǫout/ǫin| > 1 consistently indicating that |ǫout| > |ǫin| except when ǫout ≃ 0 and
changing sign. By summing the outward propagating and inward propagating components,
we can compare the strength of the 2D and 1D cascades (Figure 8.6 4th row). We find
|ǫT

2D/ǫT
1D| < 2.5 and most often ≃ 1. This suggests an anisotropic cascade of nearly equal

proportion (nearly isotropic). Since fluctuation levels in fast winds generally have higher
energy than in slow winds, this would seem to be at odds with MacBride et al. (2008) who
find a strongly anisotropic cascade in fast winds. However, Figure 8.4 shows that not all
examples of high |σC | come from fast winds. We return to this point below. The hybrid
calculation of ǫσC (Figure 8.6 bottom row) behaves again in much the same manner as is
seen in the isotropic calculation except, we note a scale change to accommodate the greater
range of values. As with the isotropic analysis, when data is selected without regard for |σC |,
all cascade rates are positive for each of the three energy ranges and for each component of
the turbulence.

It is commonly held that fast winds demonstrate greater fluctuation energy than slow
winds and this is true to a degree. MacBride et al. (2008) demonstrate that fast winds
exhibit a strongly anisotropic cascade at these same spatial scales, with the energy moving
preferentially toward perpendicular wave vectors. This is interpreted to mean that the
turbulence is evolving away from the field-aligned wave vectors that dominate fast wind
observations (Dasso et al., 2005) and toward the anticipated 2D state predicted by theory
(Shebalin et al., 1983; Higdon, 1984; Goldreich and Sridhar, 1995; Ghosh et al., 1998a,b;
Matthaeus et al., 1998). We do not measure this same strongly anisotropic cascade for the
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Figure 8.7: Distribution of wind speeds for 12 hr samples grouped in 20 km/s bins for each
of the 12 panels in Figures 8.2 and 8.5. Figure reproduced from Stawarz et al. (2010).

higher energy subsets. Figure 8.7 explains why - the anticipated shift toward fast winds as
the energy increases proves to be subtle with a sustained admixture of fast and slow wind
conditions. Dasso et al. (2005) demonstrate that the slow winds at 1AU are already largely
2D while MacBride et al. (2008) show they possesses a more isotropic cascade. The fast wind
component increases, but a sufficient number of slow wind observations remain to invalidate
the comparison between our high energy, large |σC | observations and the fast wind results
of MacBride et al. (2008). So, selecting for high energy fluctuations with large values of |σC |
does not necessarily focus exclusively on fast wind flows.

8.4 Selecting for Heating Rate

In the isotropic and hybrid analyses of Sections 8.2 and 8.3, we select intervals with similar
energy content and vary σc. Another method is to select intervals that are expected to have
similar cascade rates. One way to get similar cascade rates, barring consideration of the
new back-transfer result shown here, is to select intervals expected by solar wind studies to
possess similar heating rates. As we do in the previous chapter, the proton heating rate at
1AU for a given interval can be determined using Eq. 3.25.

In Chapter 7, we demonstrate that when observations are selected according to values of
VSWTP , the computed average energy cascade rate is in close agreement with the expected
rate of proton heating with 10-40% of the cascade remaining to heat electrons. As a further
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Figure 8.8: Computed values for D3,ISO using 12 hr samples and 10 years of data for samples
with 3 < VSWTP < 8 [×107] K-km/s. Horizontal rows are divided into four helicity ranges.
Blue (red) denotes outward (inward) propagation. Black is total energy. Figure reproduced
from Stawarz et al. (2010).
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Table 8.7: Cascade statistics from isotropic geometry Figure 8.8. Table reproduced
from Stawarz et al. (2010).

|σC | Range # ǫout
iso ǫin

iso ǫT
iso ǫC

iso

Samples [×103 Joules/kg-s]
0.00 < |σC | < 0.50 419 11.01 ± 0.17 3.11 ± 0.15 7.04 ± 0.12 3.95 ± 0.11
0.50 < |σC | < 0.75 490 3.22 ± 0.11 1.24 ± 0.07 2.22 ± 0.07 0.99 ± 0.07
0.75 < |σC | < 0.85 368 −1.76 ± 0.09 0.85 ± 0.04 −0.43 ± 0.05 −1.31 ± 0.05
0.85 < |σC | < 1.00 500 −3.95 ± 0.10 0.30 ± 0.02 −1.83 ± 0.05 −2.13 ± 0.05
0.00 < |σC | < 1.00 1777 2.10 ± 0.06 1.36 ± 0.04 1.73 ± 0.04 0.37 ± 0.04

example of the back-transfer physics, we use only those 12 hr intervals that fall into range 4 of
the 7 VSWTP ranges in the previous chapter: 3.0 < VSWTP < 8.0 [×107]K-km/s. The average
heating rate for this subset is ǫheat = 1.8 × 103 J/kg-s while the computed cascade rates are
1.9 × 103 J/kg-s for the isotropic analysis and 2.5 × 103 J/kg-s for the hybrid analysis. Fig-
ure 8.8 shows the results of our re-analysis of this same subset using the isotropic formalism.
As above, when |σC | is large the cascade rate of the dominant outward-propagating com-
ponent reverses sign and with sufficiently large |σC |, the total energy cascade rate reverses.
Table 8.7 lists the inferred cascade rates derived from Figure 8.8. Average temperatures are
∼ 105 K for each subset due to data selection. The distribution of wind speeds for the 4
σC ranges have means that vary from 450 to 485 km/s and standard deviations less than
70 km/s. The mixture of fast and slow wind intervals is about constant with changing |σC |.

The bottom row of Table 8.7 shows the computed cascade rates and average temperature
when the VSWTP range is not subset for |σC |. No net back-transfer of energy is observed
in any component or the total and the temperature is essentially unchanged. This further
demonstrates that the back-transfer condition is common, but that the rates are small com-
pared with the forward-transfer rates at lower |σC |. The fact that average temperatures
appear not to depend on the existence of back-transfer conditions raises important questions
that we address in Section 8.6.

8.5 Solar Minimum

We continue our demonstration with an examination of solar minimum years 2005 through
mid-year of 2008. We perform this analysis as above while dividing into subsets for wind
speed and fluctuation energy. As before, we remove shocks and their drivers, although there
are very few shocks during these years and most are quite weak. For simplicity, we again
limit our presentation to the isotropic formalism.

Figure 8.9 shows our analysis of the slow wind. The top panel shows the distribution
of fluctuation energy for the 12 hr samples. We limit our analysis to the energy range
1000 < E < 3000 (km/s)2. There are too few observations of |σC | > 0.85 to obtain an
accurate estimate of D3 for this instance. There is again a strong forward cascade for low
cross-helicity with a reversal of the cascade for high |σC | values. See Table 8.8 for cascade
rates.

Figure 8.10 shows our analysis of the fast wind events. The top panel again shows the
distribution of fluctuation energy for the 12 hr samples. We limit our analysis to the energy
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Figure 8.9: Analysis of slow wind VSW < 450 km/s for solar minimum observations. (top)
Distribution of fluctuation energy for 12 hr samples in 200 (km/s)2 bins. Arrow marks 1000 <
E < 3000 (km/s)2 range chosen for analysis. (remainder) Computed values for D3,ISO using
12 hr samples and 3.5 years of data. There are insufficient samples to obtain good estimates
for 0.85 < |σC | < 1.0. Blue (red) denotes outward (inward) propagation. Black is total
energy. Figure reproduced from Stawarz et al. (2010).
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Figure 8.10: Same as Figure 8.9 except fast wind VSW > 550 km/s. Figure reproduced
from Stawarz et al. (2010).
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Table 8.8: Cascade statistics from isotropic geometry solar minimum slow wind Figure 8.9.
Table reproduced from Stawarz et al. (2010).

|σC | Range # ǫout
iso ǫin

iso ǫT
iso ǫC

iso

Samples [×103 Joules/kg-s]
0.00 < |σC | < 0.50 187 7.40 ± 0.15 2.22 ± 0.14 4.77 ± 0.10 2.59 ± 0.10
0.50 < |σC | < 0.75 142 0.59 ± 0.10 1.14 ± 0.05 0.89 ± 0.06 −0.28 ± 0.06
0.75 < |σC | < 0.85 51 −1.49 ± 0.12 0.61 ± 0.03 −0.45 ± 0.06 −1.05 ± 0.06

Table 8.9: Cascade statistics from isotropic geometry solar minimum fast wind Figure 8.9.
Table reproduced from Stawarz et al. (2010).

|σC | Range # ǫout
iso ǫin

iso ǫT
iso ǫC

iso

Samples [×103 Joules/kg-s]
0.00 < |σC | < 0.50 11 21.60 ± 1.10 7.97 ± 0.76 15.77 ± 0.70 6.82 ± 0.70
0.50 < |σC | < 0.75 30 6.23 ± 0.36 6.37 ± 0.20 6.35 ± 0.21 −0.07 ± 0.21
0.75 < |σC | < 0.85 74 0.27 ± 0.19 2.30 ± 0.06 1.33 ± 0.10 −1.02 ± 0.10
0.85 < |σC | < 1.00 60 −2.39 ± 0.13 0.30 ± 0.03 −1.05 ± 0.06 −1.35 ± 0.06

range 4000 < E < 8000 (km/s)2. The number of samples for |σC | < 0.5 is not large, so
uncertainties for the D3 estimates are large. Nevertheless, the figure clearly shows a strong
forward cascade for low |σC | with a reversal at high |σC | consistent with all of the events we
show in this chapter. See Table 8.9 for cascade rates.

In both the fast and slow wind solar minimum analyses, the results fall in line with
previous conclusions. The forward cascade of HC in low |σC | states is about half the forward
cascade of total energy. In high |σC | states, the back-transfer of HC is greater than the
energy cascade rate. In both fast and slow wind conditions the energy cascade rate is
generally > 103 Joules/kg-s and exceeds 104 Joules/kg-s in the fast wind at low |σC |. This
means the solar wind continues to experience heating at 1AU during solar minimum at a rate
that is fully comparable to solar maximum conditions. Since energy injection via shear flow
appears to be less than at solar maximum and is generally considered to be more isolated
and associated primarily with CIRs, we must conclude that much of the energy cascade at
1AU is fueled by remnant fluctuations that can be traced back to the acceleration region
of the Sun. Furthermore, the back-transfer cascade of energy appears unchanged from solar
maximum conditions.

8.6 Cross-Helicity Discussion

The observed forward-transfer of energy to small scales that dominates most of the obser-
vations reported in this thesis (MacBride et al., 2005, 2008; Stawarz et al., 2009), has been
shown to provide the correct rate of heating to match observations at 1AU (see Chapter 7).
The reservoir of energy at the energy-containing scales is significant and can fuel this pro-
cess over many AU (Verma et al., 1995; Matthaeus et al., 1996b; Smith et al., 2001) before
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pickup ions are needed as a new source of energy in the outer heliosphere (Smith et al.,
2001; Isenberg et al., 2003; Smith et al., 2006; Breech et al., 2008). To demonstrate this
fact, we take the energy content and cascade rates listed in Table 8.1. For the low energy
bin 1200− 2800 (km/s)2 the average energy content is ∼ 2000 (km/s)2 = 2.× 109 Joules/kg.
Selecting for low helicity 0 < |σC | < 0.5 the energy cascade rate 3.4×103 Joules/kg-s implies
a cascade lifetime of (2/3.4)×106 = 6.×105 s ∼ 200 hrs which probably means that the 12 hr
interval is small for estimating the energy content of the energy-containing scales. Still, it
suggests a long-lived cascade. Other intervals of low |σC | show similar time scales associated
with the depletion of the energy reservoir.

An observed back-transfer of energy to large scales also places constraints on the obser-
vations. Clearly, energy cannot be removed from the thermal pool, so the energy must come
from the inertial range itself and this sets a limit on how long this process can continue. There
are no studies reporting spectra with strongly depleted inertial ranges, so the back-transfer
process must be relatively short lived compared with the time scale for depleting the inertial
range. Likewise, the energy content of the large energy-containing scales surpasses that of
the inertial range when sufficiently large scales are considered, so the ability to move energy
to large scales in order to reinforce observations there is severely limited when the inertial
range is the energy reservoir for this process. To compute the limiting time scale for the
back-transfer dynamics, we estimate the energy content of the inertial range using the power
spectrum shown in Figure 6.3 (MacBride et al., 2008): P (103 Hz) ∼ 105 (km2/s). With a
spectral index −5/3, we can integrate the inertial range from 10−4 Hz, roughly the correlation
scale, to 10−1 Hz, roughly the dissipation scale, and get an energy content of 109 Joules/kg.
If we select the energy cascade associated with the high helicity state 0.85 < |σC | < 1 from
the previous energy range, which is one of the strongest back-transfer rates reported in this
study, the time needed for the back-transfer to deplete this energy is 106 s ∼ 300 hr. So de-
pletion of the inertial range by the back-transfer of energy is a slow process that is unlikely
to yield observable signatures in the spectrum if shear-driven turbulence dominates within
a few AU.

Protracted back-transfer dynamics would suggest that high |σC | intervals would be cold
due to the absence of in situ heating. At 1AU, they are not particularly cold. Extension
of the Vasquez et al. (2007) analysis shows that if normal heating operates over the first
few tenths of an AU, inside the Helios orbit, prior to the establishment of the back-transfer
cascade subsequently seen at 1AU, the difference in temperature between a forward-cascade
and a back-transfer interval is less than a factor of 2. It seems reasonable to assume that
some time must pass before the back-transfer dynamics are sufficiently organized, so we
contend that no significant temperature differences should be in evidence at 1AU.

It is slightly more difficult to determine whether or not the observed dynamic fits into
any pre-existing theoretical formalism. The back-transfer of energy we see when σC is large
strongly suggests an inverse cascade process. Three-dimensional MHD absolute equilibria
(Stribling and Matthaeus, 1990) and long-time relaxation to minimal energy states show
conditions for which σC is back-transferred. However, net energy is forward transferred.
Simulations by Ting et al. (1986) and Stribling and Matthaeus (1991) suggest that the
cross-helicity cascade does not lead to a final state dictated by inverse cascade dynamics.
Likewise, dynamic alignment seems to provide a suitable description for our observations
and has been suggested as a possible explanation for high |σC | observations (Dobrowolny
et al., 1980), but the theory of dynamic alignment has been phrased in terms of competing
forward-cascade processes. The reported rapid alignment seen during the early phase of
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turbulence simulations (Matthaeus et al., 2008) may offer a suitable explanation for these
results and the time scale for this process agrees well with observations at 1AU, but more
study is required.
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Chapter 9

Large-Scale Velocity Shear

Wan et al. (2009) derives an expression for the MHD energy cascade rate in the presence of
a large-scale velocity shear. The third-moment expressions derived in Chapter 5 and utilized
in the analyses described in Chapters 6–8 implicitly assume the statistical properties of the
fluid are unchanging (homogeneous) throughout space. The presence of a large-scale change
in velocity violates this assumption and, as it turns out, introduces additional terms that
alter the energy cascade rate. It is also true that the solar wind is full of large-scale rises
and falls in solar wind speed (see Section 3.2). It would, therefore, seem a proper analysis of
solar wind turbulence requires the inclusion of velocity shear. Were the previous analyses in
error? If so, why do we find such good agreement between the energy cascade rate computed
without shear and the observed proton heating rates?

In this analyses, we extend the Wan et al. (2009) shear formalism for application to
the solar wind and attempt to answer these questions. We find that, because the solar
wind contains approximately equal amounts of rising and falling solar wind speed, the third-
moment expressions without shear are valid when analyzing large amounts of data with no
regard for the direction of velocity shear. However, if one wishes to analyze regions of a
single shear direction (such as rarefactions or CIRs), the shear formalism is necessary.

In this chapter, we first describe the extension of third-moment expressions to include
shear both in hydrodynamics and MHD and discuss the considerations necessary to extend
the MHD expressions for use with single spacecraft solar wind data. We then present the
findings of two analyses. The first sorts intervals of data based on the sign and magnitude
of the velocity shear within an interval and the second re-performs the heating analysis from
Section 7.2 using the velocity shear formalism.

9.1 Theoretical Approach to Large-Scale Velocity Shear

We want to examine the role of large-scale velocity shear in generating and modifying the
MHD turbulence in the solar wind near 1AU. At large scales, kinetic energy significantly
exceeds magnetic energy, and thus the energy-containing scale of interplanetary turbulence
is dominated by the contribution of velocity shear. This velocity shear is a source of the
turbulent energy cascade. In addition, the velocity shear affects the flux of energy through
the inertial range and imposes a peculiar anisotropy on the fluctuations in addition to what
arises from the presence of the magnetic field.

The role of velocity shear in turbulence is more profitably examined first with respect
to hydrodynamics in Section 9.1.1 and then applied to MHD in Section 9.1.2. From the
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hydrodynamic case, we see that the anisotropy in the second-moment contributes with the
shear to the evaluation of the energy dissipation rate.

9.1.1 Velocity Shear in Hydrodynamic Third-Moments

Remember that the Navier-Stokes equations for incompressible hydrodynamics and constant
density can be re-expressed under assumptions of homogeneous fluctuations to yield a rela-
tion between the mean rate of energy dissipation per unit mass ǫ and correlation functions
of velocity v. This is the “Kármán-Howarth” equation that we mention in Section 5.1, but
do not explicitly derive. If the turbulent system is deemed to be in a statistically steady
state the mean dissipation rate is equivalent to the energy cascade rate through the inertial
range. Kolmogorov (1941b) uses this expression to derive the hydrodynamic “4/5” Law for
the energy cascade rate, seen in Eq. (5.10). This approach is used to describe turbulent fluc-
tuations with a large number of degrees of freedom, such that the fluctuations become well
behaved in a statistical sense. In these situations, velocity shears associated with turbulent
eddies are presumed to exist over a large range of directions and to vary in speed up and
down with equal repetition so that the average shear is zero. More explicitly, v is a random
variable whose average is centered at zero and has the same statistical properties everywhere
so as to satisfy homogeneity. The energy cascade is forward from larger to smaller scales,
and this corresponds to a positive value of ǫ.

In Section 5.1, we explicitly derive the generalized KHM equation seen in Eq. (5.8). The
vector form of the KHM equation can be simplified to one dimension by integrating over the
volume of the sphere of radius L, and applying Gauss’ theorem to the divergence operator
to obtain a surface integral. The KHM equation in spherical average form is:

1

4π

∫

〈

δv|δv|2
〉

· L̂ dΩ = −4

3
ǫL (9.1)

where dΩ ≡ sin θdθdφ is the element of solid angle, and θ and φ are spherical polar coordi-
nates, and L̂ is the unit radial vector normal to the sphere (see Nie and Tanveer, 1999). The
integral in Eq. (9.1) is carried out over all angles, and normalized by 4π and so calculates the
scale to scale flux of energy through the sphere. The integral form of the KHM equation is
more analogous to the formalism of shear studies than the usual divergence representation.
Eq. (9.1) is still valid regardless of the anisotropy of the δv. Assuming isotropy allows one to
take 〈δv|δv|2〉 · L̂ out of the integral and obtain the Yaglom-like “4/3” Law seen in Eq. (5.9).
Note that the integral of the third-order structure function is negative, linear in lag (L is
always non-negative in spherical coordinates) and proportional to ǫ. The sense in which v

is a homogeneous field is critical to the derivation of the KHM equation. Remember that in
our derivation of the KHM relation, we impose homogeneity conditions to obtain Eq. (5.6).
Here, v refers to a fluctuating velocity with a mean value that is zero everywhere.

Casciola et al. (2003) obtain a different third-moment equation for examining the role of
velocity shear on turbulence in the absence of boundary effects. They set

v = u + (x · ∇)U. (9.2)

Eq. (9.2) separates total velocity into a fluctuation component u and varying mean part U.
Here the mean velocity is incompressible and restricted to a plane parallel shear flow that
varies linearly with position. This case is referred to as a homogeneous shear flow (e.g., Hinze,
1975; Townsend, 1976; Davidson, 2004). As such, increments of U for any lag are the same
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no matter the position of the origin. Casciola et al. (2003) call v in Eq. (9.2) a homogeneous
field, but we do not since the average of v varies with position. As such, the velocity used in
the KHM equation given by Eq. (9.1) is not interchangeable with the one given by Eq. (9.2).
The N-S equation can then be rewritten in a manner similar to the derivation of the KHM
equation (see Section 5.1). The resulting equation has structure functions that are separated
into parts showing the role of the background shear. Numerous experiments explore quasi-
homogeneous shear flows. These include physical experiments (e.g., Champagne et al., 1970;
Harris et al., 1977; Shen and Warhaft, 2000, 2002) and numerical simulations (e.g., Rogers
and Moin, 1987; Lee et al., 1990; Kida and Tanaka, 1994; Pumir and Shraiman, 1995; Pumir,
1996; Schumacher and Eckhardt, 2000; Schumacher, 2004; Gualtieri et al., 2002; Casciola et
al., 2003, 2007).

For a homogeneous velocity shear, and without loss of generality, we select a coordinate
system so that the background flow magnitude varies linearly with position in a single di-
rection across the flow. Taking the background velocity U to be αyx̂, the gradient is αŷ

where α is the constant magnitude of speed change with position. The mean kinetic en-
ergy is then fixed, as its production and dissipation are balanced by its convection in the
mean gradient direction (e.g., Champagne et al., 1970). Fluctuations on the background
shear have velocities u in all three directions and vary with position in all three directions.
Casciola et al. (2003) derive an equation for this situation in terms of velocity increments
and average over of a sphere of radius L. The resulting equation is referred to here as the
Casciola-Gualtieri-Benzi-Piva (CGBP) equation. As with the expressions in Chapter 5, the
viscous dissipation terms are neglected, meaning we are considering scale greater than the
dissipative scales (i.e. the inertial and energy-containing ranges). The CGBP equation is
given by:

SHD
3 + SHD

U + SHD
P = −4

3
ǫL, (9.3)

where

SHD
3 =

1

4π

∫

〈

δu|δu|2
〉

· L̂ dΩ, (9.4)

SHD
U =

αL

4π

∫

sin2 θ sin φ cos φ
〈

|δu|2
〉

dΩ, (9.5)

and

SHD
P =

2α

4πL2

∫ ∫

〈δuxδuy〉L2dLdΩ. (9.6)

Here superscript HD refers to the hydrodynamic case, δu ≡ u(x+L)−u(x) is the increment
of u along the lag and |δu|2 ≡ δu · δu. Integrals are definite. In Eq. (9.4) and (9.5), the
integrals are evaluated over all angles, and in Eq. (9.6), they are evaluated over the spherical
volume with radius L. SHD

3 is the third-moment due to fluctuations alone and has the same
form as the left hand side of Eq. (9.1). The terms SHD

U and SHD
P are proportional to the

shear, and their values are reliant on the particulars of the fluctuation anisotropy in the
(trace and off-diagonal xy element of the tensor) second-moment in the presence of shear.
The term SHD

U calculates the flux of energy through the sphere due to shear, while SHD
P is

the shear production of energy in the volume.
From Eq. (9.3), the sum of the individual terms on the left hand side is linear with L.

Casciola et al. (2003) uses three dimensional (3D) incompressible hydrodynamic numerical
simulations to examine a linearly varying plane shear flow with turbulent fluctuations (see
also Gualtieri et al., 2002). From the simulation results, they find that the fluctuations

83



satisfy Eq. (9.3) well in the inertial and energy-containing ranges. The individual terms
themselves are not, however, linear with L. The sum of transfer terms SHD

3 and SHD
U is

most significant in the inertial range, corresponding to the cascade of energy from larger to
smaller scales. In the energy-containing scales both of these transfer terms become small at
large L. The term SHD

P can be insignificant at the smallest scales of the inertial range but
becomes significant in the energy-containing range, and the dominant term at large L. It
is referred to as the shear production term because it accounts for the energization of the
cascade. The sum SHD

3 + SHD
U is comparable to SHD

P at the scale Ls = (ǫ/|α|3)1/2 (Toschi et
al., 1999).

The importance of the terms is affected by the magnitude of α. In the limit α = 0,
Eq. (9.3) reduces to the KHM equation given by Eq. (9.1). In the opposite limit of large
|α|, |SHD

3 | can be small compared to either |SHD
U | or |SHD

P | or to both. We can consider
|α|L ≫ [δu(L)]rms, where [δu(L)]rms is the root-mean-squared value of δu averaged over all
angles at fixed L. In this limit, if only one term proportional to α remains in Eq. (9.3), then
the corresponding fluctuation correlation is independent of L. This situation is likely in the
energy-containing range where |SHD

U | ≪ |SHD
P | when L ≫ Ls. It might also occur within a

large inertial range if |SHD
U | ≫ |SHD

P | and [δu(L)]rms/|α| ≪ L ≪ Ls.
The term SHD

3 can contribute significantly to the cascade even when the fluctuations
are isotropic or nearly so. For smaller L, fluctuations tend to become more isotropic (e.g.,
Hinze, 1975) due in part to the effects of pressure strains that cancel relative to energy scale
transfer, but not for energizing fluctuation velocity components of the same scale. As a
result, SHD

3 is likely to be dominant at the small scale end of the inertial range, and isotropy
can be used to estimate this term.

The shear term SHD
U is sensitive to the fluctuation anisotropy and so is more difficult to

estimate. In Eq. (9.5), the angular sensitivity comes from the projection of U and δU onto the
normal to the sphere L̂. The factor sin θ cos φ is from the projection along the flow direction
x̂ onto L̂, and the part sin θ sin φ is from the projection along the flow gradient direction ŷ

onto L̂. With this projection, an isotropic fluctuation energy dependence, or one where the
fluctuation energy is isotropic in the xy plane, causes SHD

U to vanish. This velocity shear in
three dimensions is, however, associated with the nonlinear vortex stretching of eddies. It is
known to yield a strain along two principal axes in the xy plane located half way between
x̂ and ŷ (see Tennekes and Lumley, 1972; Kundu, 1990). Along one axis, the vorticity and
energy of eddies are maximally amplified at the expense of these same quantities along the
other axis. The principal axis on which eddies are amplified or not reverses with the sign of
α. This contributes to fluctuation anisotropy and gives SHD

U a negative value.
The strain associated with vortex stretching also causes the correlation between δux and

δuy to become nonzero. This is a condition indicative of anisotropic fluctuations. For α > 0,
this correlation is negative, and for α < 0 this correlation is positive. As a result, SHD

P

will have a negative value. Lumley (1967) uses dimensional analysis to determine the value
of the 〈uxuy〉 omni-directional spectrum in the inertial range of a homogeneous shear flow
turbulence. He shows that the Kolmogorov energy cascade is associated with a k−7/3 wave
number spectrum for 〈uxuy〉. This indicates that the corresponding second-order structure
function 〈δuxδuy〉 should vary as L4/3.

To evaluate cases for a homogeneous velocity shear, we need to use the CGBP equation
and not the KHM equation. To illustrate this, we replace δv in Eq. (9.1) with δu + δU as
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occurs when the velocity shear is not detrended. We then obtain:

SHD
3 + SHD

U + SHD
extra = −4

3
ǫL, (9.7)

where SHD
extra is given by

SHD
extra =

1

4π

∫

〈δu|δU|2 + 2(δu · δU) × (δu + δU)〉 · L̂ dΩ, (9.8)

and the cubic term involving δU vanishes upon integration. These extra terms do not equate
with SHD

P in Eq. (9.3), and thus the value of ǫ obtained from Eq. (9.7) differs from that in
Eq. (9.3).

When solar wind velocity shear intervals of particular magnitude and sign are combined,
the background velocity is not spatially invariant. This situation requires using the gener-
alization of the CGBP equation to MHD. Moreover, we need a method for representing the
shear-induced anisotropy to evaluate a term analogous to SHD

U , which relies heavily on the
process of vortex stretching discussed above.

9.1.2 Velocity Shear in MHD Third-Moments

As with Eq. 9.1, the 3D MHD version of the KHM equation (see Eq. (5.12)) in spherical
average form is given by (Politano and Pouquet, 1998a,b):

1

4π

∫

〈δZ∓|δZ±|2〉 · L̂ dΩ = −4

3
ǫ±L, (9.9)

Again, this formulation of the equations better corresponds to the formalism of MHD shear
analysis. The integral represents the flux of the energy from scale to scale through the sphere.
Eq. (9.9) is general and valid for both isotropic and anisotropic turbulence, and for flow with
zero average shear. Recall, the total energy cascade rate ǫT is given by ǫT = (ǫ+ + ǫ−)/2
and should be equivilent to the mean dissipation rate of energy. In this chapter, we refer to
Eq. (9.9) and any of the equations (see Chapter 5) derived from it as the PP equations.

Wan et al. (2009, 2010a,b) examine the resulting relations for MHD, when the veloc-
ity is separated into fluctuations and background linear shear flow, in both two and three
dimensions. Wan et al. (2010b) particularly, focus on the 2D case where the velocity and
magnetic field fluctuations are confined to a plane, and where there is no background mag-
netic field. In this 2D case, the fluid vorticity is non-linearly strained via electrodynamic
vortex amplification associated with a differential Lorentz force (e.g., Spangler, 1999). They
undertook incompressible 2D MHD numerical simulations with periodic boundaries of driven
turbulence amidst a velocity shear. The prescribed time constant background velocity varies
up and down spanwise, and sharply between two regions of nearly linear shear. In the linear
shear region, the contributions from fluctuations and shear terms are evaluated and found to
be in good agreement with theory. They show that the power spectrum of the fluctuations
exhibits anisotropic behaviors at lower wave numbers. This is induced by the velocity shear
which, judging from their Figure 10, is oriented approximately with principal axes that are
streamwise and spanwise. Power is greater in the spanwise direction. Moreover, they con-
sider the total velocity without any detrending for shear, and the 2D PP equations are found
to give a good estimate of the cascade rate when the entire spatial domain is considered, so
that the net shear vanishes.
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In the solar wind, the effects of the velocity shear influence fluctuations with vectors and
variations in all three spatial directions. Moreover, there is a background interplanetary
magnetic field B0 that must also be considered, and here we assume that B0 is a constant.
We set:

Z± = z± + αyx̂±B0/(µ0ρ)1/2, (9.10)

where z± = u±b/(µ0ρ)1/2 is the fluctuating part, b is the fluctuating magnetic field, and the
mean velocity is as in Section 9.1.1. Wan et al. (2009) derive the shear expressions from the
3D MHD equations that we refer to here as the Wan-Servidio-Oughton-Matthaeus (WSOM)
equations. The WSOM equations are obtained using the fluctuating and mean parts and
integrating over a spherical volume. We recast the equations in a form analogous to Eq. (9.3)
as:

SMHD,±
3 + SMHD,±

U + SMHD,±
P = −4

3
ǫ±L, (9.11)

where

SMHD,±
3 =

1

4π

∫

〈δz∓|δz±|2〉 · L̂ dΩ, (9.12)

SMHD,±
U =

αL

4π

∫

sin2 θ sin φ cos φ × 〈|δz±|2〉dΩ, (9.13)

and

SMHD,±
P =

2α

4πL2

∫ ∫

〈δz±x δz∓y 〉L2drdΩ. (9.14)

Again, we neglect dissipative terms since the application is for the inertial. The derivation
of these terms is entirely analogous to the derivation of the KHM equation presented in
Section 5.1. The only differences are that the MHD equations written in terms of the Elsässer
variables (see Eq. (3.8)) are used instead of the N-S equation and the Elsässer variables are
rewritten in the form seen in Eq. (9.10). Remember that the MHD equations in terms of
the Elsässer variables are of the same form as the N-S equation. The nature of the terms
and limits with respect to α are in accord with the above discussion for hydrodynamics.
Eq. (9.12) is the familiar MHD KHM equation, but only for the fluctuations with the large-
scale background shear removed. Eq. (9.13) and (9.14) are again the shear transfer and shear
production terms seen in the in the previous section for the hydrodynamic version. Summing
over the ± terms in Eq. (9.11)-(9.14) and then dividing by 2 gives the corresponding total
energy cascade rate. The WSOM equations are valid for any form of anisotropic turbulence
which arises in association with the velocity shear.

When σc = 0, all corresponding ± terms in Eq. (9.12)-(9.14) are equal to each other
(SMHD,+

3 = SMHD,−
3 , etc.) and contribute to the forward energy cascade so that each term

is non-positive. Recall, when σc = ±1, non-linearity in the incompressible MHD equations
vanishes and so should all terms. For intermediate σc, there is no known constraint on the
sign of the terms. The expectation is that for σc not near ±1, the cascade will be forward
and all terms in Eq. (9.12)–(9.14) will be non-positive.

9.1.3 Application of Velocity Shear Formalism to the Solar Wind

Eq. (9.11) provides what is needed to examine simulation results from incompressible 3D
MHD quasi-homogeneous shear flow. Yet, the solar wind is a flow where the ratio of the
plasma to magnetic pressure is typically below unity, and thus is far from an incompressible
medium. Here, B0 and its attendant anisotropy with respect to direction become vitally im-
portant. Turbulent velocity and magnetic field fluctuations in the presence of B0 nonlinearly
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interact most strongly across B0 (e.g., Shebalin et al., 1983; Matthaeus et al., 1996b). With
highly oblique wave vectors, the fluctuations are found to approach a nearly incompressible
(e.g., Zank and Matthaeus, 1993) or weakly compressive (e.g., Bhattacharjee et al., 1998)
state. For this case, the incompressible MHD equations contain the dominant non-linear
effects needed to describe the turbulent fluctuations. Observations show that interplanetary
fluctuations are relatively non-compressive in the inertial range. Moreover, lags across B0

are readily available at 1AU. Recall from Section 6.2 thatMacBride et al. (2008) shows from
Eq. (5.34) and (5.35), which derive from Eq. (9.9), that the cross-field cascade in the solar
wind is indeed stronger than along B0. The amount of anisotropy is modest enough that
the isotropic approximation is still useful in cascade rate determination (see also Stawarz et
al., 2009). We, therefore, ignore anisotropy arising from B0 (the hybrid formalism) in this
chapter, in order to focus on velocity shear.

In order to proceed further with solar wind data analyses, we consider approximations for
the individual terms in Eq. (9.11) since single spacecraft analyses lack direct measurement
of fluctuation anisotropy with respect to the velocity shear. Again, because we combine
intervals with a particular varying background velocity in this chapter, we must use the
WSOM equations to obtain ǫ and not the PP equations, for the same reasons discussed
earlier concerning the hydrodynamics case. In Section 9.2, we show that the PP equations,
in particular the isotropic form seen in Eq. (5.17), yield incorrect results for such cases.

In Eq. (9.11), the terms SMHD,±
U require anisotropy, and thus we treat first the estimation

of these terms. The SMHD,±
U terms from Eq. (9.13) involve an integral over the fluctuation

energy that vanishes for isotropic fluctuations in the xy plane. With the assumed form of
the velocity shear and with fluctuations varying in all three spatial dimensions, the most
straightforward expectation for fluctuation energy anisotropy induced by the shear is the
alignment of this anisotropy with the mean strain principal axes (ŷ ± x̂)/21/2. This is due
to the aforementioned mechanism of vortex stretching. We can evaluate the integral in
Eq. (9.13) by assuming that the fluctuation energy |δz±(L, φ, θ)|2 varies with θ and φ in the
simplest possible manner: θ and φ vary according to an ellipsoidal model with coefficients
independent of L, so that the anisotropy is constant with L. This neglects the expected
attenuation of anisotropy for smaller L in the inertial range. In the solar wind, however, the
inertial range is moderately short, and moreover the estimates for ǫ are based on averages
taken over the observed linear range of L. Thereby, this approach can be viewed as the
estimate for the average anisotropy over the extent of this range. In this approach, the values
of SMHD,±

U are varied and summed with the other terms for which more direct estimates are
available. This yields a total dissipation rate that is at least consistent with the observed
proton heating rate.

We replace |δz±(L, φ, θ)|2 with f(φ, θ)|δz±(L)|2 where:

f(φ, θ) =
3

1/a2 + 1/b2 + 1/c2
×
[

sin2 θ (1/2 + cos φ sin φ)

a2
(9.15)

+
sin2 θ (1/2 − cos φ sin φ)

b2
+

cos2 θ

c2

]

is the ellipsoid of anisotropy with principal axes radii a and b in the xy plane and the out
of plane axis with radius c. (Note that a larger radius along its axis corresponds to smaller
amplitude along that axis for fixed radius L.) The value of f is normalized so that 4π
results when f is integrated over all solid angle. The mean values 〈|δz±(L)|2〉 over all angles
can be related to the values along the streamwise lag 〈|δz±(L, 0, 90o)|2〉. The values along
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the streamwise lag are hereafter denoted by 〈|δz±(L)|2s〉, that in application are replaced
by measured values from solar wind data. Dividing through with the value of f in the x
direction, we obtain:

〈|δz±(L)|2〉 = As〈|δz±(L)|2s〉 (9.16)

where the factor As ≡ 1/f(0, 90o) is given by:

As =

[

3

1/a2 + 1/b2 + 1/c2

]−1

×
[

1

2

(

1

a2
+

1

b2

)]−1

(9.17)

or more compactly by

As =
2

3

c2(a2 + b2) + a2b2

c2(a2 + b2)
. (9.18)

With these assumptions, the resulting form for Eq. (9.13) is:

SMHD,±
U = −2|α|L

15

|b2 − a2|
a2 + b2

〈|δz±(L)|2s〉 (9.19)

which is independent of c by virtue of the cancellation of factors in Eq. (9.15) and (9.17). We
assume that the forward energy cascade is enhanced by both SMHD,+

U and SMHD,−
U when they

are nonzero because the data used in Section 9.2 combines intervals without regard for σc.
The average |σc| is not so large as to significantly alter the inertial range cascade (Smith et
al., 2009; Stawarz et al., 2010). With this assumption, we take absolute values in Eq. (9.19),
so that SMHD,±

U is always non-positive. This means that we can also take b2 ≥ a2 without loss
of generality and not be concerned with the sign of α when evaluating Eq. (9.19). Note that
isotropy in the xy plane a2 = b2 gives SMHD,±

U = 0. Moreover, the choice of principal axes in
the xy plane in Eq. (9.15) maximizes |SMHD,±

U | for fixed xy anisotropy b2/a2, whereas if the
axes are along x̂ and ŷ, SMHD,±

U are zero. Alternatively, for fixed values of SMHD,±
U , b2/a2

is minimized because a different orientation for the principal axes in the xy plane requires
larger b2/a2 to obtain the same values of SMHD,±

U .
The model Eq. (9.19) is essential in the analyses below. The values of a and b are to be

taken as free parameters to vary anisotropy in the xy plane and examine the resulting values
of ǫ± to compare with independently proton heating rates heating rates from Eq (3.25). We
neglect the effect of σc in the present analysis and use the same parameters a, b, and c for the
Elsässer amplitudes |z+| and |z−|. Taking a case from Section 9.2, one sets a = 1, and b = 2,
then SMHD,±

U = −0.08|α|L〈|δz±|2〉 with a proportionality constant of 0.08. The actual range
of the proportionality constant is quite limited. The largest magnitude is 2/15 and occurs
when b2/a2 → ∞. As a result, the magnitudes of SMHD,±

U are sensitive to small departures
from isotropy but insensitive to large departures.

Remaining terms on the left hand side of Eq. (9.11) give nonzero values even for isotropic
fluctuations, but the underlying fluctuations will be anisotropic for finite α. To lowest or-
der, we expect the anisotropy of these terms to align with the mean strain principal axes.
We approximate the anisotropy as one equivalent to the fluctuation energy and separate
integrands as quantities whose angular dependence is given by Eq. (9.15) and an amplitude
dependence only on L. The integration over all angles of f(φ, θ) only results in the cancel-
lation of the 4π factor in Eq. (9.12) and (9.14). The mean value of the ratio between the
actual amplitude dependence and the dependence measured in the streamwise direction is
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proportional to As. This introduces a dependence upon the free parameter c, as well as, a
and b. From Eq. (9.12), the terms dependent only on fluctuations are estimated by:

SMHD,±
3 = A3/2

s 〈[δz∓x |δz±|2]s〉 (9.20)

which retain the signs of the third-order structure functions along the streamwise lag. The
shear production terms SMHD,±

P involve an evaluation over the volume. With this approach,
we use the streamwise values of < δz±x δz∓y > so that:

SMHD,±
P =

2αAs

L2

∫ L

0
〈[δz±x δz∓y ]s〉L2dL (9.21)

With increasing L, the values of SMHD,±
P accumulate and generally increase in magnitude.

Notice that absolute values are not introduced into Eq. (9.21) because the signs and mag-
nitudes of the integrands are obtained with measurements. Their relation with the sign of
α gives a consistency check on the assumption that velocity shear driving of turbulence is
preeminent.

The dependence of As on c can vary the magnitude of the estimates for SMHD,±
3 and

SMHD,±
P . For the typical case in Section 9.2, a = c = 1 and b = 2, we find from Eq. (9.18) that

As = 1.2 which differs little from complete isotropy where a = b = c = 1 and As = 1. In the
limit that c2/a2 → ∞, which corresponds to fluctuation wave vectors confined increasingly to
the xy plane, As = 2/3. In the opposite limit that c2/a2 → 0 and b2/a2 is finite, As → ∞, so
that large anisotropy in the z-direction can greatly affect the values of SMHD,±

3 and SMHD,±
P .

The final expressions used in the present analyses change some of the notation and are
consistent with previous chapters of this thesis. Again, the signs of Z± and z± are redefined
with respect to the background magnetic field so as to correspond to propagating Alfvén
waves traveling inward (denoted by superscript ‘in’) or outward (denoted by ‘out’) from the
Sun. The background velocity is mainly in the heliocentric radial direction R̂ away from
the Sun. In Cartesian coordinates, this corresponds to the x̂ direction used above. We take
ŷ to be in the direction of the Earth’s revolution about the Sun which is the T̂ direction
of the RTN coordinate system. Again, we take L = −VSW τ for the same reasons discussed
in Chapter 5. We hereafter also drop the subscript denoting streamwise measurements, and
the superscript MHD since that is the only case we consider in the remainder of this chapter.
Eq. (9.11) with all approximations included is rewritten as:

D
out/in
3 + D

out/in
U + D

out/in
P =

4

3
ǫ
out/in
SH VSW τ (9.22)

where the functions of VSW τ are:

D
out/in
3 = A3/2

s 〈δzin/out
R |δzout/in|2〉 (9.23)

D
out/in
U =

2|α| VSWτ

15

|b2 − a2|
a2 + b2

〈|δzout/in|2〉 (9.24)

D
out/in
P = −2αAsVSW

τ 2

∫ τ

0
〈δzout/in

R δz
in/out
T 〉τ 2dτ. (9.25)

We also define the sum of structure functions in Eq. (9.22) by:

D
out/in
3,SH ≡ D

out/in
3 + D

out/in
U + D

out/in
U , (9.26)
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and total structure functions by:

DT
3 ≡ (Dout

3 + Din
3 )/2 (9.27)

DT
U ≡ (Dout

U + Din
U )/2 (9.28)

DT
P ≡ (Dout

P + Din
P )/2, (9.29)

DT
3,SH ≡ (Dout

3,SH + Din
3,SH)/2. (9.30)

The total dissipation rate is given by:

ǫT
SH = (ǫout

SH + ǫin
SH)/2. (9.31)

The subscript ‘SH’ denotes that the expressions correspond to the WSOM theory for the
case of homogeneous shear, and use detrended velocities to evaluate fluctuations and their
moments. Recall the concept of detrending from Chapter 6. As with the expressions in
Chapter 5, the sign of the structure functions as a function of τ for a cascade from large
to small scales in positive. For the purposes of this chapter, we retain the superscript “T”
when referring to total quantities.

For comparison purposes, we also consider the isotropic expression which does not con-
sider shear given by Eq. (5.17). In this chapter, we denote this expression with the subscript
‘NOSH’ for ’no shear’.

9.2 Shear Analyses

In this study, we again use the same 10 years of ACE magnetic field and plasma data used
in the analyses from Chapters 7 and 8. This data spans from 1998 until the end of 2007. A
wide range of solar wind conditions are encompassed in this data including solar minimum
and solar maximum conditions, as well as, intervals of increasing and decreasing solar wind
speed associated with velocity shears.

The analyses of MacBride et al. (2005, 2008) and Stawarz et al. (2009) demonstrate that
the MHD third-moment expressions described in Chapter 5 can provide scale independent en-
ergy cascade rates within the inertial range at 1AU. The calculated rates match up well with
inferred proton heating rates in the solar wind. In this study, we use the WSOM equations
and the modified third-moment shear expressions D

out/in
3,SH (VSW τ) described in Section 9.1 to

analyze solar wind observations with regard to velocity shear.
We consider two subinterval lengths 6 and 12 hrs. Additionally, as with the previously

described analyses, we remove intervals containing CMEs and other transients based on a
list of known events. We compute values of both ǫT

SH and ǫT
NOSH based on the 6 and 12 hr

intervals. The method for computing ǫT
NOSH is the same as that used by MacBride et al.

(2008) and Stawarz et al. (2009, 2010) (see Chapters 6–8), while the method used to compute
ǫT
SH is a slightly modified version of the same procedure.

Moments computed from 12 hr intervals are found to give results consistent with those
from 6hr intervals. Thereby, we present only the results for 12 hr intervals, which is the
same interval size we use in the analyses of Chapters 7 and 8.

The shear analyses assume a uniform shear, and hence we need to obtain the linear trend
in each data interval. We perform a linear fit of the radial velocity data in each 12 hr interval
and subtract the linear trend from the raw radial velocity dataset. This gives a linear trend
characterizing the shear, and a detrended set of data characterizing velocity fluctuations.

90



Recall the RTN coordinate system described at the end of Section 2.4. In the solar wind,
we take the directions R̂ (radially outward from the Sun) and T̂ (in the direction of the
Sun’s rotation) to correspond to the x and y directions in the theory. In other words, we
assume the gradient to be in the (R̂, T̂) plane. This neglects any latitudinal component
to the shear and is the natural starting point for a single-spacecraft analysis. We return
to this assumption in Section 9.3. The background solar wind velocity is mainly in the R̂

direction, but varies with time at the spacecraft and has a gradient in the T̂ direction due
to the rotation with the Sun of sources of different solar wind speeds. The wind speed is
constant on the local Parker spiral, so that α = ∂VSW /∂T is given by:

α = − ∆VSW

ΩRtinterv

= −5.9 × 10−8∆VSW [s−1] (9.32)

where ∆VSW is the change in speed based on the linear trend for the whole 12 hr interval
and is in units of km/s, R = 1 AU is the heliocentric distance, Ω = (2π/27) days−1 is the
synodic angular frequency of solar rotation taken to be the value near the solar equator, and
tinterv = 0.5 days is used. Note that ΩRtinterv corresponds to a distance traversed along a
circular arc for time tinterv owing to solar rotation.

Fluctuation velocity and magnetic field data, and the proton density, which is averaged
for the 12 hr interval, are used to compute δz

in/out
R |δzout/in|2, |δzout/in|2, and δz

out/in
R δz

in/out
T

as a function of time lag for each 12 hr interval. These quantities are then interpolated to
a grid of spatial lag based on the average VSW for the interval as described in Section 6.2.
The above third-moments, along with α and the chosen free parameters a, b and c, are
then used to calculate D

out/in
3 , D

out/in
U , D

out/in
P and D

out/in
3,SH as a function of lag given by

Equations (9.23)-(9.26), as well as the total quantities DT
3 , DT

U , DT
P and DT

3,SH given by
Equations (9.27)-(9.30).

When computing the isotropic MHD expressions, which do not include shear, we com-
pute δZ

in/out
R |δZout/in|2 as a function of lag for each 12 hr interval, which gives the function

D
out/in
3,NOSH. Values are also interpolated onto a common spatial grid based on the average VSW

for the 12 hr interval in order to compute ensemble averages. In addition, the expected pro-
ton heating rate ǫheat given by Eq. (3.25) is computed for each 12 hr interval for comparison
with computed cascade rates.

Averaging the 12 hr interval quantities, we perform two analyses. First, in Section 9.2.1,
we subset intervals into bins of velocity shear and examine the predictions of the WSOM
equations and those of shear-driven turbulence. Second, in Section 9.2.2, we bin according
to VSWTP and reanalyze the heating results seen in Figure 7.3 using the WSOM equations.

9.2.1 Sorting Results by Local Velocity Shear

In order to apply Eq. (9.22)-(9.31), intervals are sorted into bins according to ∆VSW in a
specified range. The ∆VSW bins that we use range from −100 to +100 km/s with equal
widths of 25 km/s. Note that negative values of ∆VSW correspond to regions where faster
wind is followed by slower wind so that these are regions of rarefaction. Positive values of
∆VSW correspond to regions where a slower wind is being overtaken by a faster wind, and
thus these are regions of compression.

The present analysis bins compression and rarefaction intervals for equivalent levels of
shear without regard for the duration of the event. With equivalent levels of shear, the theory
has cascade rates that are the same in the rarefaction and compression intervals. Important
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differences in these intervals when analyzed, however, are shown below. This might arise
due to assumptions in our analysis such as the neglect of latitudinal gradients. Our theory,
in general, is symmetric regardless of whether the shear is positive or negative. Results are
shown without additional comment on these assumptions. Section 9.3 then discusses how
the assumptions can impact the results.

Averages over the 12 hr intervals having ∆VSW within the appropriate bins are performed
to find the average value of DT

3,SH as a function of lag. The uncertainty weighted average of
3DT

3,SH/(4 L) is calculated for each spatial lag L which is less than the corresponding time
lag τ of 8000 s based on a reference speed of 400 km/s. We average over the range of lags
in which DT

3,SH varies almost linearly. Recall that the linear scaling of DT
3,SH is required by

the theory. This constraint is shown further below to be important when ∆VSW > 0. This
calculation gives the average ǫT

SH for each bin. A similar approach is used to obtain ǫT
NOSH .

We use the method described in Chapter 7 to compute uncertainties. Take X to be
some quantity, e.g., D

out/in
3 at a particular spatial lag, which is to be averaged over the 12 hr

intervals analyzed. Each value of X computed from an individual 12 hr interval is taken to be
a statistically independent estimate with no intrinsic uncertainty because 12 hrs is greater
than the correlation length and the propagation of measurement error is likely the same
for all samples. As such, estimates from the 12 hr intervals follow a Gaussian distribution,
and Gaussian statistics can be used to compute the mean, standard deviation, and error-of-
the-mean for the ensemble averaged quantities. From there, the uncertainty is propagated
through further calculations using standard methods.

The average value of ǫheat is also obtained from all 12 hr intervals per ∆VSW bin. The
expression for ǫheat in Eq. (3.25) is determined by an analysis based on the spherically
symmetric proton equation of state. Hence, the heating rate is the average over the spherical
polar angles and so does not correspond to rates in separate rarefaction and compression
regions. Based on the work of Burlaga and Ogilvie (1973), who find that the net heating
in compressions over rarefactions is ∼15% on average, we expect that the ∆VSW > 0 bins
have somewhat more heating than predicted by ǫheat, while ∆VSW < 0 bins have less. The
amount of relative deviation is, however, likely to be less than approximately 5%. Thus, ǫheat

is deemed to be a sufficiently good guide to the required dissipation rate from the turbulence
in the present analyses. Uncertainty for the average value of ǫheat is determined as above.

Figure 9.1 plots the value of ǫT
SH , ǫT

NOSH, and ǫheat as a function of ∆VSW (see also Ta-
ble 9.1). Here the value of ǫT

SH is obtained by assuming an anisotropy of 2 : 1, corresponding
to the values a = c = 1 and b = 2 in Equations (9.18) and (9.24). Errors-of-the-mean are
plotted but are typically smaller than the symbols used, and horizontal bars indicate the
range of ∆VSW analyzed for each data point. Except for ǫT

NOSH , the plotted rates increase
with |∆VSW |, as is expected of a turbulent energy cascade driven by velocity shear. The
values of ǫT

SH and ǫheat approximately follow each other, and ǫT
SH is always above zero, consis-

tent with a forward cascade dissipating and heating the plasma. The cascade rate ignoring
shear ǫT

NOSH appears to be dominated by the sign of the shear and has no correspondence
with ǫheat. The absolute value of ǫT

NOSH is smaller for the bin with ∆VSW < 0 than the one
for the same but positive signed ∆VSW bin.

The values of ǫT
SH for the bins closest to zero, i.e. −25 to 0 km/s and 0 to +25 km/s, in

Figure 9.1 are anomalously small compared to ǫheat and not a good match. The poor match
probably occurs because cases of weak shear are less likely to be characterized well by a linear
trend of velocity shear. In these cases, the intervals tend to be located between intervals
of positive and negative shear and may be at local maximum or minimum VSW . Thus, we
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Figure 9.1: Cascade rates versus ∆VSW for 12 hr intervals and comparison with the average
proton heating rate. The no-shear analysis is dominated by the signal from the background
shear. The shear analysis yields acceptable results for ∆VSW < −25 km/s. Error bars are
smaller than symbols. Table 9.1 gives plotted data values, errors, and sample numbers.
Figure reproduced from Stawarz et al. (2011).

focus on the outer lying bins, where the shear is more significant and better characterized.
The farther outlying bins on the left and negative side of ∆VSW = −25 km/s have ǫT

SH

that matches or exceeds ǫheat. These can provide sufficient energization for the plasma
including electron and alpha heating, as well as proton heating. Taking electron heating to
be about 50% of proton heating provides a good upper bound to the expected total plasma
heating (Vasquez et al., 2007; Stawarz et al., 2009), and the values obtained for ǫT

SH can
satisfy these bounds. On the other hand, farther outlying bins on the right and positive side
of ∆VSW = +25 km/s have a more irregular trend up and down with respect to ǫheat and are
less in agreement with ǫheat than is the case on the opposite side. This is not a trend to be

Table 9.1: Rates for Figure 9.1. Table reproduced from Stawarz et al. (2011).

∆VSW Range # ǫT
SH ǫT

NOSH ǫT
heat

[km/s] Samples [×103 Joules/kg-s]
−100 < ∆VSW < −75 159 3.94 ± 0.11 −4.59 ± 0.09 2.39 ± 0.14
−75 < ∆VSW < −50 404 3.20 ± 0.05 −2.75 ± 0.04 1.94 ± 0.07
−50 < ∆VSW < −25 915 1.56 ± 0.03 −1.89 ± 0.03 1.63 ± 0.05
−25 < ∆VSW < 0 1334 0.62 ± 0.06 −0.85 ± 0.02 1.54 ± 0.04

0 < ∆VSW < +25 782 0.32 ± 0.11 1.41 ± 0.04 1.72 ± 0.05
+25 < ∆VSW < +50 410 1.51 ± 0.29 5.18 ± 0.09 2.36 ± 0.09
+50 < ∆VSW < +75 204 1.18 ± 0.34 9.66 ± 0.12 2.70 ± 0.13
+75 < ∆VSW < +100 136 6.59 ± 0.38 16.94 ± 0.26 3.02 ± 0.17
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expected for an ensemble of true homogeneous shear-driven turbulence, where the sign of α
or ∆VSW does not affect the cascade rate. Section 9.3 discusses how compressional regions
in the solar wind can deviate from the theory and contribute to the observed trends.

The analysis based on the PP equations giving ǫT
NOSH, clearly does not provide the

cascade rates for cases with persistent shear. This is explained in Section 9.1, and these
results are in agreement with conclusions reached there. The signal from the velocity shear
itself contaminates the measurements to such an extent that the sign of the calculated ǫT

NOSH

is the same as that of ∆VSW .
We now consider the relative contribution of fluctuation-only and shear-dependent terms

to the cascade rates. The theory requires DT
3,SH to vary linearly. The individual terms that

sum to DT
3,SH can vary differently from a linear scaling. Figure 9.2 plots the values of DT

3 ,
DT

U , DT
P , and the sum of these three terms DT

3,SH as a function of lag for the ∆VSW bin from
−75 to −50 km/s. The value of DT

3,NOSH as a function of lag within this bin is also plotted
for completeness, but we do not discuss this quantity further. Figure 9.3 plots the same but
for the ∆VSW bin from +50 to +75 km/s. The trends in each figure are typical of the bins
with the same sign of ∆VSW .

In Figure 9.2, all quantities vary approximately linearly with lag over the plotted range.
By far, the largest contribution to DT

3,SH comes from the detrended third-moment term DT
3 .

The values of DT
U and DT

P are smaller with DT
U larger than DT

P . Though small, DT
P has a

value that is more than one standard deviation from zero. The relative error for DT
P is less

than 1%, and the error bars for DT
P in Figure 9.2 are smaller than the plotted symbol size.

Its magnitude and sign can be compared to the predictions of shear-driven turbulence. Here,
DT

P has a positive sign as expected of the generation of energy from the shear. Its relatively
small value is consistent with the plotted range of lags being within the inertial range. Since
DT

P according to Eq. 9.25 and 9.30 depends on 〈δzout/in
R (τ)δz

in/out
T (τ)〉, which we measure to

be nonzero at all lag times τ , fluctuations are anisotropic, and this too is consistent with
shear-driven turbulence.

In Figure 9.3, where ∆VSW > 0, we find complicated behavior which is outside the expec-
tations for homogeneous shear-driven turbulence. In Section 9.3, we discuss how compressive
effects can contribution to this behavior. The term DT

3,SH varies linearly with lag starting
from near zero out to about 2000 s, which is in accord with theory, but then decreases and
follows a non-monotonic course. The linear range is only a quarter of the plotted range and
smaller than the expected inertial range. The computed value of ǫT

SH is taken only from
this range. The term DT

3 changes from positive values to negative ones beyond 2000 s. Both
DT

3,SH and DT
3 have values with much larger uncertainty than corresponding points in Fig-

ure 9.2. The term DT
U varies nearly monotonically over the whole range which corresponds to

increasing fluctuation energy with increasing lag. It even exceeds DT
3 beyond lags of 1000 s.

The term DT
P remains close to zero in the plotted range. The irregular behavior of DT

3,SH

with lag is found for all bins with ∆VSW > 0 and its relatively large uncertainty undoubtedly
contributes to the scatter in ǫT

SH about ǫheat.
In the theory, we expect symmetrical results for rarefaction and compression intervals.

In Figure 9.2, we find that the plotted quantities for rarefactions are well-behaved with
consistent behavior throughout the entire range and measurement uncertainties are relatively
small. By contrast, Figure 9.3 for compressions, shows that the plotted quantities do not
follow a consistent trend and do not conform to expectations of linear scaling. Therefore, we
fail to find the expected symmetry and conclude based on the observed nonlinear scaling and
larger uncertainties that the analysis provides a poorer assessment of compression regions.
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Figure 9.2: Structure function terms versus lag for the second leftmost speed bin in Fig-
ure 9.1. The plot shows the contribution from fluctuation and shear terms to the total sum
where the sum for the shear analysis is DT

3,SH (solid black line), fluctuation term is DT
3 (solid

red line), shear transfer term is DT
U (short dashed black line), shear production term is DT

P

(solid green line), and the no-shear analysis is DT
3,NOSH (solid blue line). Error bars are

included with data points. Figure reproduced from Stawarz et al. (2011).

Figure 9.3: Structure function terms versus lag for the second rightmost speed bin in Fig-
ure 9.1. Plot quantities are rendered as in Figure 9.2. Figure reproduced from Stawarz et
al. (2011).
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Figure 9.4: Second-order structure functions versus lag for the leftmost bin in Figure 9.1.
The values are intrinsic to shear production. Negative values are consistent with shear-
driven turbulence. Table 9.2 gives fit parameters. In this plot, the superscripts “I” and
“O” correspond to the superscripts “in” and “out” for inward and outward propagating
fluctuations. Figure reproduced from Stawarz et al. (2011).

Figure 9.5: Second-order structure functions versus lag for the rightmost bin in Figure 9.1.
Positive values are consistent with shear-driven turbulence. Table 9.2 gives fit parameters.
In this plot, the superscripts “I” and “O” correspond to the superscripts “in” and “out” for
inward and outward propagating fluctuations. Figure reproduced from Stawarz et al. (2011).
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Table 9.2: Fits for Figures 9.4 and 9.5. Table reproduced from Stawarz et al. (2011).

∆VSW Range Quantitiy Fit Lag Range
[km/s] [s]

−100 < ∆VSW < −75 〈δzin
R δzout

T 〉 (−0.339+0.004
−0.004)τ

0.73±0.01 0 < τ < 7232
−100 < ∆VSW < −75 〈δzout

R δzin
T 〉 (−0.479+0.009

−0.009)τ
0.62±0.02 0 < τ < 7232

+75 < ∆VSW < +100 〈δzin
R δzout

T 〉 (0.072+0.007
−0.006)τ

0.86±0.10 0 < τ < 2048
+75 < ∆VSW < +100 〈δzout

R δzin
T 〉 (0.158+0.008

−0.008)τ
0.82±0.06 0 < τ < 2048

Because the terms D
out/in
P provide the most direct measurement of the effects of the shear-

driven turbulence, we examine separately the underlying fluctuation structure functions.
These are the second-order structure functions given by 〈δzout/in

R δz
in/out
T 〉. In the theory, the

sign of 〈δzout/in
R δz

in/out
T 〉 matches that needed to produce energy for the cascade. In addition,

the absolute value of 〈δzout/in
R δz

in/out
T 〉 increases with increasing scale since production is

strongest at the large, energy-containing scales. Figure 9.4 plots 〈δzout
R δzin

T 〉 and 〈δzin
R δzout

T 〉
as a function of lag for the ∆VSW bin from −100 to −75 km/s. Figure 9.5 plots the same
but for the ∆VSW bin from +75 to +100 km/s.

In Figure 9.4, both 〈δzout
R δzin

T 〉 and 〈δzin
R δzout

T 〉 monotonically decrease and have negative
values that are consistent with production by shear-driven turbulence. Other bins with
∆VSW < −25 km/s show the same behavior.

On the other hand, Figure 9.5 for compressive flow shows 〈δzout
R δzin

T 〉 and 〈δzin
R δzout

T 〉
increasing for lags shorter than 2000 s but then decreasing for larger lags. The sign is
positive for shorter lags, consistent with shear-driven turbulence, but becomes negative at
large enough lag. This behavior is not found in all bins with ∆VSW > +25 km/s wherein
〈δzout

R δzin
T 〉 and 〈δzin

R δzout
T 〉 are sometimes found to be negative for all lags. Thereby, results for

positive ∆VSW bins continue to show inconsistencies with shear-driven turbulent predictions.
In Figures 9.4 and 9.5, power law fits are made to quantities as a function of lag. Fit

parameters and lag ranges are given in Table 9.2. The power law index is roughly 3/4.
This is smaller than the expected value of 4/3 based on Lumley (1967) dimensional analy-
sis of Kolmogorov-like cascade with linear strain (see Section 9.1.1). Departures from the
Kolmogorov prediction at 1AU are also found by Tessein et al. (2009) for the second-order
velocity fluctuation structure function, whereas the corresponding structure function for the
magnetic field fluctuation does satisfy the prediction. Thus, the results for 〈δzout/in

R δz
in/out
T 〉

may be another manifestation of the velocity fluctuation departure. Potentially, the lack of
correspondence with a Kolmogorov cascade indicates that the turbulent state at 1AU has
not yet reached an asymptotic statistically steady state.

The anisotropy of the fluctuation energy is set by free parameters b and c where a = 1
without loss of generality, and we now consider how this impacts the energy cascade rate.
Here, we limit the discussion to the two bins with ∆VSW ≤ −50 km/s, which are the ones
that agree best with homogeneous shear-driven turbulence. Moreover, we only consider
varying b and maintain c = 1. We do this because b gives the anisotropy in the plane of the
background velocity and gradient, which is the important one regarding linear shear.

Figure 9.6 plots ǫT
SH as a function of the free parameter b for the ∆VSW bin from −100 to

−75 km/s. A value of b = 1 corresponds to isotropy, and the value b = 2 corresponds to the
2 : 1 anisotropy we use in the previous plots. The lower dashed line corresponds to ǫheat and
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Figure 9.6: Plot of cascade rate versus in-plane fluctuation energy anisotropy parameter b
for the leftmost bin in Figure 9.1. Departure of b from 1 indicates the amount of anisotropy.
Lower dashed line corresponds to ǫ = ǫheat and upper to ǫ = 1.5ǫheat. Figure reproduced
from Stawarz et al. (2011).

the upper dashed line corresponds to 50% above ǫheat, which gives an approximate bound
for the additional energy nessisary to heat electrons. For this bin, values of b between 1.06
and 1.69 yield cascade rates in the expected range of plasma heating. For the next adjacent
∆VSW bin which ranges from −75 to −50 km/s (not shown), b = 1 has ǫT

SH slightly greater
than ǫheat, while 50% excess is reached for b = 1.69. Thereby, for these bins modest amounts
of anisotropy are consistent with plasma heating.

9.2.2 Sorting Results by VSWTP

In the present analysis based on the WSOM equations, we model the anisotropy induced by
the velocity shear on the fluctuations. Anisotropy associated with the direction of B0 is not
considered here.

Previous studies (MacBride et al., 2005, 2008; Stawarz et al., 2009, 2010) (see Chap-
ters 6–8) employ data that is selected without regard to shear and, therefore, average over
approximately equal amounts of increasing and decreasing shear regions, as is required for
this approach. These studies find that the expressions derived from the PP equations give
energy cascade rates that account for expected proton heating rates. In order to determine
how the results using the WSOM equations compare with these studies, we perform the
Stawarz et al. (2009) analysis for bins of VSWTP using the isotropic MHD third-moment ex-
pression. Stawarz et al. (2009) also obtains rates parallel and perpendicular to B0 using the
hybrid MHD formalism whose sums are in better agreement with the expected total plasma
heating than the rates based on the isotropic case. Here, we only compare with the isotropic
case since the shear formalism does not yet include additional anisotropy effects associated
with B0.

In accordance with Chapter 7, 12 hr intervals are placed into seven overlapping VSWTP

bins based on the average product of the solar wind velocity and the proton temperature
within the interval. For each of the VSWTP bins, we again compute ǫT

SH with a 2 : 1
anisotropy, ǫT

NOSH , and ǫheat using the methods described above.
Figure 9.7 plots these three quantities against the average value of VSWTP within each
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Figure 9.7: Reanalysis of Stawarz et al. (2009) heating analysis from Figure 7.3 plotting
the energy cascade rate versus VSWTP for 12 hr intervals and comparison with the average
proton heating rate. Error bars are smaller than symbols. Table 9.3 gives the plotted data
values, errors, and sample numbers. Figure reproduced from Stawarz et al. (2011).

bin, and values are given in Table 9.3. Although the shear is considered in calculating ǫT
SH

for each 12 hr interval, values are averaged in Figure 9.7 only by VSWTP bins. Compressions
and rarefactions occur in all bins. Note that due to a small error in the selection of 12 hr
intervals in the Stawarz et al. (2009) analysis and new selection criteria in applying the shear
formalism, the values for ǫT

NOSH are slightly different than those shown in Figure 7.3 (see
Section 7.3.1). The same conclusions that we draw in Chapter 7 can, however, be inferred
from the slightly revised data. All quantities in Figure 9.7 tend to larger rates for increasing
VSWTP . The value of ǫT

SH trends from above ǫheat in the two lowest VSWTP bins to below
ǫheat in the highest bins. The value of ǫT

NOSH deviates from ǫheat in the opposite sense.
In Chapter 7, we note that the two lowest bins of VSWTP contain intervals mainly from

the lower temperature extremes of the solar wind. Following Vasquez et al. (2007), we

Table 9.3: Rates for Figure 9.7. Table reproduced from Stawarz et al. (2011).

VSWTP Range # ǫT
SH ǫT

NOSH ǫT
heat

[×107 (km/s)K] Samples [×103 Joules/kg-s]
0.2 < VSW TP < 2.0 978 0.78 ± 0.03 0.20 ± 0.02 0.49 ± 0.00
1.1 < VSW TP < 3.0 1536 1.13 ± 0.04 0.60 ± 0.03 0.73 ± 0.01
2.0 < VSW TP < 4.0 1446 1.12 ± 0.05 0.86 ± 0.04 1.05 ± 0.01
3.0 < VSW TP < 8.0 1851 1.78 ± 0.04 1.89 ± 0.03 1.79 ± 0.01
4.0 < VSW TP < 12.0 1814 2.44 ± 0.04 3.13 ± 0.04 2.52 ± 0.02
8.0 < VSW TP < 26.0 991 3.06 ± 0.07 5.71 ± 0.07 4.39 ± 0.04

12.0 < VSWTP < 40.0 413 3.65 ± 0.15 7.63 ± 0.15 5.88 ± 0.07
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Figure 9.8: Structure function terms versus lag for the shear analysis where VSWTP is near
the middle of the plotted range in Figure 9.7. Corresponding plot quantities are rendered as
in Figure 9.2. Figure reproduced from Stawarz et al. (2011).

suggest that ǫheat may be an overestimate in these lower bins because the analyses for ǫheat

only considers VSW selection to obtain the radial proton temperature gradient. Freeman
and Lopez (1985) finds that cold intervals at 1AU are more consistent with nearly adiabatic
behavior. This differs significantly from the average behavior based on VSW . Thereby, the
deviations in the lower bins for ǫT

NOSH are not considered detrimental to the analysis for
ǫT
NOSH , at least with the current knowledge of heating rates.

The two highest bins of VSWTP have ǫT
NOSH greater than ǫheat. The Stawarz et al. (2009)

analysis of Chapter 7 finds these intervals mostly come from fast winds that always have
high TP . Electron heating is noted by Pilipp et al. (1990) for fast winds with no discernible
heating in slower wind intervals. The trend from ǫT

NOSH near ǫheat for the lower bins of VSWTP

to ǫT
NOSH greater than ǫheat at the highest bins is then consistent with the expectations for

total plasma heating.
Two concerns are evident about the values of ǫT

SH as a function of VSWTP . For the two
lowest VSWTP bins, ǫT

SH certainly provides sufficient energization for proton heating. Are
these values too high even for total plasma heating? Additionally, in the two highest bins,
ǫT
SH is too small to explain even proton heating.

Figure 9.8 plots DT
3 , DT

U , DT
P , and DT

3,SH as a function of lag for the middle VSWTP bin.
As is expected, DT

3,SH is approximately linear with respect to lag. DT
3 provides the dominant

contribution to the total DT
3,SH . These results are typical of all VSWTP bins except for the two

largest bins where DT
U begins to dominate the sum at long lags. Recall that DT

U dominance
at longer lags is a feature of ∆VSW > 0 intervals (see Figure 9.3). Combine this with the fact
that ǫT

SH is not well determined for ∆VSW > 0 and that intervals with ∆VSW of both signs
are mixed together in VSWTP bins, we surmise that intervals with ∆VSW > 0 are a likely
contributor to the lack of agreement between ǫT

SH and ǫheat. Moreover, the highest bins of
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VSWTP contain relatively more intervals of large positive ∆VSW and thus strong compression
regions.

9.3 Velocity Shear Discussion

For homogeneous shear flow, the sign of the shear gradient should have no influence on the
energy cascade rates. Rather only the magnitude of the shear contributes. This is clearly
not found in the analyses of ACE data presented here. Rising VSW intervals do not predict
the same cascade rate as the corresponding falling intervals. Moreover, the predicted linear
trend of total modified third-moments DT

3,SH in rising intervals is only met on a relatively
short range of time lags which is smaller than the expected inertial range.

The most probable reason for the difference is the importance of compressional flow near
sharply rising VSW intervals. Corotating interaction regions where slow wind is overtaken by
fast wind (see Section 3.2) have been simulated with MHD numerical codes (see Gosling and
Pizzo, 1999, for a review). The simulation results show that the velocity is compressional
in the interaction region, in that the velocity is deflected from the radial direction and has
gradients normal to the stream interface with components along the radial direction, as well
as along the tangential and northward directions. This means the background flow near the
interaction region is not consistent with a homogeneous shear flow.

The differences between the actual flow and the homogeneous shear flow assumption
appear to be too great to apply the present analyses accurately. The linear behavior of the
structure functions at small lags for rising intervals suggest, however, that the fluctuations
are non-compressive at these same scales. The background velocity may require the most
attention and at least involves calculating the shear based on a determination of the actual
orientation of the stream interface. In the present analyses, we assume the normal to this
surface to be along the T̂ direction so that α is then generally underestimated for rising
intervals.

The falling VSW intervals correspond to extensive rarefactions which have rather gentle
gradients of background plasma density. Conditions here are closer to ones matching a
homogeneous shear flow. We find that DT

3,SH is linear over a considerable range of lags.
Cascade rates are determined which are consistent with plasma heating rates. Thereby, the
approach of homogeneous shear flow works better with rarefaction intervals.

The difference between rising and falling intervals impacts the analysis of cascade rates
versus proton heating as a function of VSWTP . When the analysis is made with regard to
shear-dependent terms, the dissipation rates fall below observed proton heating rates for the
two largest VSWTP bins. These bins contain the highest percentages of high speed winds
and intervals of large rising VSW . The inconsistency here is likely ascribed to the relative
strength of compression in the rising speed intervals and its impact on the shear analysis. On
the other hand, third-moment analysis without velocity detrending, which combines rising
and falling intervals, finds dissipation rates in accord with observations in these same bins
indicating the shear formalism is not necessary when averaging over approximately equal
amounts of positive and negative shear. As we discuss in Section 9.1, the PP equations
require homogeneity and the inclusion of equal amounts of increasing and decreasing wind
speed results in the preservation of this condition. We, therefore, conclude the results of
MacBride et al. (2008) and Stawarz et al. (2009, 2010) (see Chapters 6–8), which do not
employ the shear formalism, still stand because they utilize large subsets of solar wind data
containing approximately equal proportions of positive and negative velocity shear.
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Chapter 10

Summary

The solar wind is a variable environment at a variety of length scales and evidence suggests
turbulence is an important dynamic within this system. Aside from simply governing the
evolution of fluctuations generated both at the Sun and by in situ sources such as shocks,
turbulence also provides an energy transport mechanism that can account for the observed
in situ heating of the solar wind.

In the solar wind, where magnetic and plasma fluctuations are coupled, turbulence is
described by magnetohydrodynamics. In many ways, the magnetohydrodynamic description
of a plasma is analogous to the hydrodynamic description of a fluid. In particular, third-
moment expressions, of the Kolmogorov (1941b) or Yaglom (1949) forms, for the turbulent
energy cascade rate are present. These expressions are among the few “exact” relationships
in the field of turbulence study and do not require one to make assumptions on the underlying
dynamics of the non-linear turbulent interactions. This is of particular importance in the
solar wind, where these turbulent dynamics are still not well understood and appear to be
far more complex than the current theories can account for. Previous studies (MacBride
et al., 2005, 2008), outline the application of third-moment expressions to single spacecraft
solar wind data and demonstrate the viability of such techniques.

In this thesis, we use these third-moment expressions to analyze 10 years of ACE plasma
and magnetic field observations from 1AU. We have 4 main goals motivating our analyses:
analyzing the convergence of third-moments in the solar wind (see Chapter 7), determining
if turbulence can account for observed proton heating rates at 1AU (see Chapter 7), deter-
mining the dependence of the energy cascade rate on the cross-helicity (see Chapter 8), and
determining if large-scale velocity shear has a significant effect when analyzing solar wind
data (see Chapter 9).

We perform a third-moment analysis by dividing the 10 years of ACE data into subinter-
vals, which we take to be statistically independent estimates with no intrinsic uncertainty.
While we mainly focus our analyses on 12 hr intervals, we also experiment with the 48 hr
intervals used by MacBride et al. (2008) in Chapter 7 and 6 hr intervals in Chapter 9. We
find that 48 hr intervals introduce problems with convergence and 6 hr intervals are typi-
cally consistent with 12 hr intervals. Estimates of the third-moments computed from these
intervals are then interpolated to a common wind speed and averaged together to obtain
estimates of the third-moments from which energy cascade rates and uncertainties are de-
rived. In Chapter 7, we perform the analyses both with and without shocks and transient
drivers removed from the data. In subsequent chapters, we focus on the data with transients
removed because these structures represent contaminations to the data, which are outside

102



the theories we are testing.
To demonstrate convergence, we analyze ACE data starting at the beginning of year 2000

in the above way, using a hybrid MHD formalism. We compute cascade rates and associated
uncertainties for data sets that are incrementally increased in size from the start date, to
determine how the uncertainty decreases as more data are used. We find that about a year
of ACE data at 64-second cadence is needed to reduce the fractional error of an estimate of
the relevant MHD third moment to below 30% when using 12 hr intervals. 48 hr intervals
introduce unusual jumps in the uncertainty.

To compare proton heating rates with turbulent energy cascade rates, we use three dif-
ferent forms of third-moment analysis (isotropic MHD, hybrid MHD, and isotropic hydro-
dynamic). The data are divided into seven bins based on the product of the solar wind
velocity and the proton temperature and cascade rates and uncertainties are computed.
These cascade rates are then compared to proton heating rate values that are computed
from Eq. (3.25), using the average VSWTP value of each bin. The isotropic and hybrid MHD
energy cascade rates for all but the lowest values of VSWTP are consistently greater than the
values needed to account for the proton heating rate. At the lowest values of VSWTP , we
believe the third-moment energy cascade rates are likely more indicative of the true heating
rates than Eq. (3.25). Overall, our results are in good agreement with the proton heating
rates derived from radial gradients of proton temperatures. Although we do find a consis-
tent excess of energy, this excess is not more than can be explained through the heating
of additional species in the solar wind. Therefore, the third-order structure function analy-
sis appears to be an effective method for measuring the turbulent cascade and in turn the
combined heating rate of ions and electrons in the solar wind.

We analyze the dependence of the energy cascade on the normalized cross-helicity using
the same methods described above, but this time we divide 12 hr intervals based on the
absolute value of the normalized cross-helicity and on the fluctuation energy of the interval.
We find the expected general decrease in the energy cascade rate as a function of normalized
cross-helicity; however, periods of high cross-helicity display a weak back-transfer of energy
from small to large scales within the inertial range of the turbulent spectrum. This result is
persistent throughout the data without regard for data selection. It is seen (on a statistical
basis) during both solar minimum and solar maximum conditions. We find that the intervals
that contribute to high cross-helicity conditions are regions of relative isolation (Roberts et
al., 1987) that are often characterized by the analysis of (Belcher and Davis, 1971), but can
also be intervals of relatively low wind speed so long as the parcel of solar wind plasma is
isolated from regions of shear. Our results are surprising and outside the range of many
existing theories that predict a nominal, if small, forward cascade in regions of high cross-
helicity.

In the final analysis of this thesis, we consider both the isotropic MHD formalism and
newly developed WSOM third-moment expressions that include the effects of large-scale
velocity shear (Wan et al., 2009). The non-shear formalism requires the fluctuations to be
randomly distributed about a homogeneous mean and the presence of large-scale shears, as
are seen in the solar wind, would seem to break this condition.

In order to apply the WSOM expressions to the solar wind, the background solar wind
flow is taken to be in the radial direction from the Sun. Gradients across this flow are not
directly measured by a single spacecraft. As the solar wind convects passed the spacecraft,
different sources of wind pass the spacecraft due to the rotation of the Sun. We determine
a velocity gradient from the ratio of the change in a linearly detrended background velocity
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for 6 or 12 hr intervals and the distance along a heliocentric circular arc traversed at 1AU
due to solar rotation over the length of the interval. The gradient is assumed to be along
the direction of solar rotation. As such, the shear is contained in the RT plane. In this
approach, the tilt of the shear out of this plane is neglected, and the flow is assumed to be
incompressible.

Fluctuation anisotropy, which cannot be directly assessed using single-spacecraft tech-
niques, is another aspect in the application of the WSOM expressions. We use a set of
approximations for the terms in the WSOM equations so that they are re-expressed using
observed quantities and free parameters for fluctuation anisotropy. An assumed fluctuation
anisotropic energy distribution averaged over lag is developed based on the hydrodynamic
concept of vortex stretching of eddies associated with shear-driven turbulence. We take the
induced fluctuation anisotropy to follow an ellipsoid geometry.

We apply these concepts using similar techniques to the previous analyses, with an ad-
ditional linear detrending step in the application of the WSOM equations. We divide data
based on the change in the linear velocity trend over the interval length, which is propor-
tional to the magnitude of the shear. We compare isotropic MHD and WSOM cascade rates
in these velocity shear bins to proton heating rates from Eq. (3.25). We observe well be-
haved (linear with lag) WSOM third-moments in negative shear rarefaction intervals, which
produce adequate cascade rates with only a modest amount of anisotropy. The WSOM
third-moments in positive shear compression regions are not as well behaved and do not
match proton heating rates as well. This is likely due to compressional effects violating
the assumptions of the theory. When considering shear of a particular sign, the non-shear
expressions are dominated by the signal of the shear and do not produce reliable cascade
rates.

We also re-perform the proton heating analysis of Chapter 7, which averages over ap-
proximately equal amounts of positive and negative shear, using the WSOM formalism. The
limitations of the current application of the WSOM theory in compressional intervals, limit
its effectiveness in this type of analysis. We further conclude that considering approximately
equal amounts of positive and negative shear in this analysis, as well as in the analyses of
Chapter 7 and 8, preserves the assumption of homogeneity and allows the non-shear for-
malisms to produce accurate cascade rates. We are, therefore, confident in the results of the
analyses of Chapters 7 and 8.
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