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Abstract

This report presents first steps at applying chaos theory to the solar activity cycle.
We provide brief reviews of the history of sunspot records, the mathematical framework
of chaos theory, and solar dynamo theory. Finally, we present results of nonlinear
analysis of solar motion and propose that further research focus on characterizing local
Lyapunov exponents of solar dynamics.

1 Introduction

The Sun is a mass of incandescent gas [45] whose chief role, as far as life on Earth is con-
cerned, is to fuse hydrogen into helium and produce life–sustaining energy in the process.
If that were its only pass–time, however, the Sun would be a luminous, glorified one–trick
pony. The Sun also produces neutrinos in its core, exhibits many modes of oscillation
throughout its volume, and fires off various ejecta from its surface in the form of electro-
magnetic energy and plasma. We still do not completely understand all the dynamical
processes that occur inside the Sun, but we know that its inner goings–on are intimately
connected to our lives in ways biological, spiritual, and technological. We also know that
its inner workings are not as simple as [45] implies: it is a fluid sphere whose outer thirty
percent rotates differentially while its core rotates more or less uniformly, it exhibits large–
scale meridional flows and small–scale turbulence, and it goes through two noteworthy
cycles: The 11–year (Schwabe) activity cycle, and the 22–year (Hale) magnetic cycle.

Previous studies (e.g. [23] and [36]) have attempted to explain the variation in solar
cycles by appealing to an argument based on planetary tidal forces. The basic line of
such an argument is that the gravitational pull on some region of Sun due to all (or some
subset) of the planets results in the cyclical nature of solar variability, much as the Moon
causes ocean tides on Earth. Apparent similarities between the orbital periods of Jupiter
and Saturn, and the 11–year Schwabe cycle make the notion of planetary tides enticing,
but certain authors (e.g. [39] and [7]) have provided strong cases against linear planetary
forcing arguments.

In this paper, we propose to apply the joint frameworks of chaos theory and nonlinear
time series analysis to solar data in order to further our understanding of the dynamics of
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the Sun. Naturally, we must begin by answering the question, “is solar motion chaotic?”
but once we have established that it is, we may move on to the more intriguing challenges
of exploring nonlinear connections between chaos in solar motion and other objects in the
solar system, and using knowledge of solar dynamics to work toward a method of predicting
future solar activity.

2 History and Recent Work

Before embarking on a quantitative analysis of chaos in solar activity and dynamics, let
us trace the observational history of solar activity through the development of the sunspot
record. We will follow this brief history with some examples from the recent literature of
how analysis of solar activity is used to benefit the scientific community and society as a
whole.

2.1 Early Work

Theophrastus of Athens, a student of (and eventual successor to) Aristotle, made the
first recorded observation of a sunspot when he identified them as indicators of rain in a
meteorological treatise circa 325 BC. In fact, he referred to them casually enough in his
writing that we may presume that sunspots were by then already familiar sights [46]. At
the time of Theophrastus and up until the invention of the telescope in the 17th century,
those interested in the Sun could only observe sunspots during periods of persistent haze
or smoke on the horizon. This would have been enough to obscure enough visible light to
allow small dark spots on the surface of the Sun to stand out, though it could not have
provided any protection from ultraviolet radiation to shield the observer’s eyes from long–
term harm. In this sense, as would later be true in the case of early studies of radioactive
materials, näıvité was a boon to science.

The advent of the telescope in Europe meant that scholars and amateur astronomers
could more easily track the occurrence rates and motion of sunspots, without having to
wait for a sand storm to blow through, or for an entire city to catch fire. It is not surprising
that Galileo Galilei had a hand in the sunspot game, but he was not the only interested
observer. While he had many contemporary budding heliophiles, Galileo fought most
bitterly with Christoph Scheiner over who deserved precedence with regard to the first
observation of a sunspot through a telescope, among other matters [40]. It is interesting
to note that Scheiner first used the transit of sunspots across the solar disk to determine
that the Sun’s rotational axis is tilted 7.5◦ from the normal to the ecliptic plane, but when
Galileo used the deformation in this tilted transit to argue in favor of a heliocentric solar
system, Scheiner (a Jesuit priest) disagreed. Scheiner, for his part, invoked an additional
precession of the Sun’s axis to maintain the geocentric viewpoint [46]. History has borne
out Galileo’s hypothesis, but unfortunately, the contemporary religious climate did not
hold such an opinion in high regard.
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William Herschel is credited with developing the first precise past record in 1801 of both
the presence and absence of sunspots, and with forwarding the conjecture that an absence
of sunspots coincided with higher–than–usual wheat prices in England. For his efforts, the
Royal Society of England lavished him with ridicule, though his fate was certainly more
pleasant than that of Galileo [40]. Given the awe with which the Sun has been regarded for
millennia, this certainly could not have been the first time that perceived solar activity was
blamed for events on Earth. However, it was the first step toward methodically correlating
sunspot activity with climate–related events on Earth (presuming, of course, that the high
wheat prices were due to a poor growing season, which was itself due to weather–related
phenomena).

Next came Heinrich Schwabe. As is wont to happen during the course of carefully
scientific inquiry, Schwabe discovered the sunspot cycle around 1840 when he was searching
for something completely different. At the time, he estimated it to be ∼ 10 years. Schwabe
had the suspicion that there was an object orbiting the Sun inside the orbit of Mercury,
and was therefore making careful observations of any dark spots on the solar disk that
would indicate the presence of another body [46]. Fortunately for us, sunspots and small
planets look very similar, and he was able to make a substantial discovery, despite the fact
that it was not the discovery he hoped for.

By the late 1850s, Richard Carrington was stationed at the Red Hill Observatory in
Surrey, England, where he recorded occasions in which a dark sunspot would flash white,
and a magnetic signature (e.g. the deflection of a compass needle or the interruption of
telegraph service) would be registered on Earth [40]. In a way, these observations are the
logical successors to Herschel’s conjecture that sunspot patterns are somehow linked to
events on Earth that affect daily life. Carrington and Gustav Spörer independently made
two of the most important contributions to heliophysics since Schwabe’s discovery of the
solar cycle: The first is that sunspots move equatorward throughout the solar cycle; the
second is that spots near the equator rotate more quickly than spots at higher latitudes,
implying that the Sun rotates differentially, and providing evidence that the Sun is a fluid
[46]. Spörer is best known for the former (called the “Spörer Sunspot Law”) and Carrington
is best known for the latter (called “Carrington rotation”). This period also saw Rudolf
Wolf, who is best known for establishing a “relative sunspot number” (which he used as a
way to normalize world–wide sunspot counts), then employing those normalized counts to
trace solar cycles back as far as he could. By that time, the heliophysics community had
since refined their estimates to place the solar cycle closer to 11 years, so he settled on the
cycle from 1755–1766 as Cycle 1. We still employ Wolf’s numbering scheme today.

These observations, especially the polar–to–equatorial sunspot drift, set the stage for
Edward Maunder at the turn of the twentieth century. Maunder was well aware of Spörer’s
work and he made a point in his 1904 paper “Note on the Distribution of Sun–spots in Heli-
ographic Latitude 1874–1902” to defend Spörer’s assertion that the mean sunspot location
migrates equatorward against certain members of the scientific community who, Maunder
felt, misunderstood Spörer’s point [27]. Maunder’s conclusions also lent credence to obser-
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vations made by Wolf around the same time. Figure 1 reproduces Figure 8 of Maunder’s
1904 paper. It is the first occurrence of the “Butterfly diagram” method of representing the
distribution of sunspots with latitude over the course of one or more solar cycles, an image
now very familiar to members of heliophysics community. This representation scheme was
one of Maunder’s chief contributions to the study of solar activity, but perhaps the most
ubiquitous reference to him within the subject of the Sun–Earth connection lies in the
name given to the period 1645–1715: “The Maunder Minimum”. Maunder had identified
a dearth of sunspots in telescopic records during this time, but received most of his praise
posthumously, when Jack Eddy compiled a thorough review of the data available to him
in 1976 and formally named that period of anomalously low solar activity after Maunder
[13]

Figure 1: The original image from Maunder’s 1904 paper, “Note on the Distribution of Sun–
spots in Heliographic Latitude 1874–1902” [27]. The winged shape gives this “Butterfly
diagram” its name. In the diagram, time (in years) moves from left to right while latitude
on the solar surface (-40◦ to +40◦) moves from bottom to top.
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Maunder was also interested in investigating the relationship between sunspots and
geomagnetic activity once studied by Wolf and Edward Sabine in the mid–nineteenth cen-
tury [40]. Whether or not he satisfied his curiosity, it was his contemporary George Hale
who took the crucial next step toward connecting sunspots to magnetism. In 1908, Hale
discovered Zeeman splitting in spectral lines that he identified with sunspots. In doing
so, he determined that the mean magnetic field of a sunspot is ∼ 2900 G (0.29 T) and
he proposed that this magnetic field originates in the vortex motion of a sunspot. Since
his photographic evidence suggested that all sunspots are vortices, it must follow that all
sunspots give rise to a magnetic field [17]. The magnetic field intrinsic to a sunspot is not
itself the cause of the solar events such as coronal mass ejections (CMEs) and solar flares
that disrupt life on Earth, but they are locations on the surface of the Sun out of which the
Sun’s magnetic field peaks. Thus they were early evidence of the Sun’s powerful, persistent
magnetic field [46].

With that note, we must make the transition from thinking of sunspots as focal events
to thinking of sunspots as proxies for other events more meaningful to life on Earth. The
discovery of the sunspot cycle is a testament to good scientific practice, and its analysis over
a century and a half has met with wonder and has begotten further interest in heliophysics,
but sunspots alone do not drive space weather. Their cycle is, nevertheless, an important
indicator of the ebb and flow of solar activity. Most notably, we have come to learn that
sunspots are also regions of high–energy activity, and are the seats of solar flares. Solar
flares are sources of x–ray radiation that influences Earth’s ionosphere and are typically
followed by coronal mass ejections (CMEs) that can cause geomagnetic storms if they are
directed Earthward [44]

2.2 Recent Applications

Late October into early November 2003 was a period of impressive solar activity referred to
within the space science community as the Halloween storms (cf [37], [15]). This activity
had noticeable electromagnetic effects, including momentarily stripping plasma away from
the region of space surrounding the Earth, and disrupting the Earth’s magnetic field and
producing auroral displays. In addition to those effects on the plasma environment, which
are to be expected to some degree, the Halloween storms produced two solar flares that were
associated with measurable changes in the density of neutral molecules in the atmosphere
[43].

Manned space missions pose a threat of high doses of radiation to the astronauts in-
volved, due to the fact that they are no longer shielded from high–energy particles by the
Earth’s magnetosphere. Mars is a natural destination for manned flights, but the duration
of the required trip would cause the flight personnel to be exposed to amounts of hazardous
radiation nearly equal to the career limit levels established by NASA [42]. Such exposure to
background radiation is reasonably well–understood; however NASA still lacks the ability
to predict solar flares that could expose astronauts to an additional high dose of radiation
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(ibid).
Beyond the scope of the electromagnetic effects of high–energy bursts of plasma and

x–ray radiation, authors have proposed various links between changes in solar activity
and changes in human health. Preka–Papadema et al. examined procedural records from
emergency rooms in two Greek hospitals during scattered months from 2000 through 2006
(Cycle 23). They concluded that cases of cardiological trauma, neurological trauma, and
burns, as well as cases related to oncology and pathology increased during periods of
heightened solar activity [34]. Other authors reported that there is a statistically significant
link between certain terrestrial weather cycles, and planetary and solar wind geomagnetic
indicators [16]. Those authors go on to claim that they have found similar cycles “in over
2500 years of international battles, in 2189 years of tree rings, in around 900 years of the
aurora, and in human psychophysiology” (ibid). A third set of authors identify statistically
significant periods in cervical epithelial abnormalities matching the approximately 11–year
sunspot cycle [21]. They proposal various possible mechanisms, including the effect of
changing geomagnetic fields on iron in the human body, flare–related radiation incident
upon the surface of the Earth, and subconscious reactions to changes in terrestrial weather
induced by space weather events. However, they acknowledge that a correlation between
solar cycles and human health cycles does not necessarily mean that a causal effect exists.

As proposed effects of solar activity move further and further from space weather, it
is natural to the scientific community (especially the space science community) to greet
them with skepticism. However, only a narrow mind will turn away such propositions
categorically, and we must not make that mistake. The trouble is that even effects on
terrestrial weather are “indirect” and thus “very complex” [44], so that a causal link is
difficult or impossible to make. That difficulty does not mean we should not continue to
study the relationship between solar activity and life on Earth.

3 Characteristics of Chaotic Systems

Thus far, we have considered observations of sunspots and what their relative presence
or absence indicates about the current level of solar activity. We have furthermore exam-
ined the effect of solar activity on the near–Earth environment, and possible impacts on
terrestrial life. However, we have not yet characterized the increase and decrease in solar
activity in a precise way. The purpose of this paper is to connect evidence of the variability
of solar activity cycles (in the form of sunspot counts) to predictable physical parameters
in a quantitative way in order to further our ability to predict the nature of future solar
activity.

Simply put, the Sun appears to exhibit characteristics of a chaotic system. Our first
task, then, is to precisely define what we mean by the terms “chaos” and “chaotic system”.
Deterministic chaos is the motion of a system whose time evolution has a sensitive depen-
dence on initial conditions. We may contrast this with randomness, which describes the
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motion of a system in which the present state has no causal connection to the previous one
[47]. As a simple example of this contrast, consider the following two dynamic systems: a
coin toss, and the waterwheel shown schematically in Figure 2. Both systems are subject
to the laws of classical physics and both evolve in time according to mathematical formulæ
that can be written down. However, the coin toss is random and the waterwheel is chaotic.
In the former case, each flip of the coin carries no information about the previous flip, and
begets no knowledge of the result of the subsequent flip. There are dynamic quantities at
work during each toss (e.g. the angle of the coin relative to the flipper’s thumb pre–toss,
the weight of coin, etc.), but once the coin lands and the outcome is recorded as “heads” or
“tails”, the system resets. The net result of many tosses is subject to the laws of probability
alone.

t = ??? 

Figure 2: Schematic representation of a chaotic waterwheel. The water flows in from the
faucet, filling cup the cup beneath, and drains from the bottom of each cup at a specified
constant rate. The wheel will begin turning left or right when the weight of water in cup
#1 overcomes the friction forces holding the wheel still. The distribution of water mass
will determine the rate and direction of rotation, which will be chaotic for certain rates of
flow and drainage.

In contrast, the position and velocity of a cup on the waterwheel at time ti (which,
as a pair, are analogous to “heads” and “tails” after a given coin flip) depend on the
position and velocity at time ti−1. This should be intuitive, since the matter that makes
up the waterwheel can not simply disappear from one location and appear at another,
nor can otherwise absent energy suddenly cause a jump in the momentum of that matter.
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Edward Lorenz found, in the early 1960s, that it is possible to force certain hydrodynamical
systems mechanically or thermally (he studied a system that involved both) such that the
system exhibits either periodic, quasi–periodic, or non–periodic behavior “when there is
no obviously related periodicity or irregularity in the forcing process” [26]. He applied
simplifying assumptions to a system in which a cylindrical basin of water was rotated
mechanically and subjected to a radial thermal gradient, and derived the following system
of equations:

ẋ = −σ(x− y) (1)

ẏ = −xz + rx− y (2)

ż = xy − bz (3)

where a dot indicates a time derivative and σ, r, b are parameters. Despite the presence
of water and mechanical forcing in the Figure 2 system, this is not the system that Lorenz
studied. What is remarkable, however, is that Equations 1–3 exactly describe the chaotic
motion of the waterwheel, though they are more commonly expressed as

ȧ1 = ωb1 −Ka1 (4)

ḃ1 = −ωa1 + q1 −Kb1 (5)

ω̇ = −
(ν
I

)
ω +

(
πgR

I

)
a1 (6)

where a1 and b1 are the cosine and sine Fourier coefficients of the fundamental mode of
rotational coordinate of the wheel, respectively, and ω is the angular velocity of the wheel.
We can lend physical insight to the a1 and b1 variables by recalling that cos(nπx/L) and
sin(nπx/L) represent the orthogonal basis states for a Fourier decomposition. Thus a1
gives a measure of the ratio of water on the left side of the wheel to that on the right, while
b1 gives a measure of the ratio of the water on the top of the wheel to that on the bottom
[4].

In Equations 4–6, I is the moment of inertia of the wheel, ν is a rotational damping
rate, g is the acceleration due to gravity, R is the radius of the wheel, K is the rate of
leakage from the cups, q1 is related to the inflow of water, and we have employed the
transformation x → ω/g, y → (πgR/Kν)a1, z → (b1 − q1/K)/b (cf [41]). Thus, we have
written down a system of differential equations that describe the motion of the waterwheel,
and we can use a time–stepping method to solve Equations 4–6 numerically, but we must
use techniques from nonlinear stability analysis to make predictions about the asymptotic
behavior of the system. What Lorenz found in 1963 is that there exist values for the
parameters in his original system of equations that precluded stable fixed points and limit
cycles, but for which the system’s trajectory remained in a bounded set [26]. Such behavior
is a hallmark of chaos.
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A more illustrative example of chaos is the strange attractor. In short, the strange
attractor is that bounded set in phase space on which a system’s trajectory remains. More
precisely, a strange attractor is an attractor which exhibits sensitive dependence on initial
conditions, where an attractor is a minimal invariant set that attracts an open set of initial
conditions. We can decode this definition by separating it into three terms: To attract an
open set of initial conditions means that when a trajectory starts out in some open set
that contains the attractor, that trajectory gets arbitrarily close to the attractor as t→∞.
The word invariant means that once a trajectory is on the attractor, it does not leave, and
the word minimal means that there is no proper subset of the attractor’s set that is both
invariant and attracts an open set of initial conditions [41].

In addition to the definition of a strange attractor given above, strange attractors can
be distinguished from the attractors that describe linear processes by their fractal, or
non–integer, dimension. In short, fractal dimension is an extension of the more familiar
integer dimension to geometric figures for which the density of points around a given point
changes over the figure. What we define as the fractal dimension of a strange attractor
(which, incidentally, is approximately 2.06 for the Lorenz system) is a sort of average of
the “local dimension” over the entire attractor [1].

The strange attractor for the Lorenz Equations is shown four ways in Figure 3: In
the upper left panel, we show the attractor in three dimensions, and in each of the other
three panels, we show the attractor projected onto one of the three possible planes. The
motivation for showing the Lorenz attractor in this way is to illustrate its complexity as
a geometrical object, as well as to demonstrate the risk in projecting an attractor onto
too–low a dimension: Any of the two–dimensional images could appear to be a legitimate
description of the dynamics, but the three–dimensional images shows that we need more
than two dimensions to truly capture the dynamical trajectories. We are fortunate to
have the differential equations for the Lorenz system, since knowledge of the underlying
equations allows us to compute quantities such as the fractal dimension analytically. In
most experimental applications, the only data are from a noisy time series sampled with
finite precision for a finite length of time. In those cases, we must resort to numerics if we
wish to characterize the attractor and move forward with analysis.

Fractal dimension is considered one of two invariants of the motion; the second is a
class of numbers called global Lyapunov exponents. In much the same way as we can
characterize a linear system by its Fourier spectrum, we can characterize a chaotic system
by its fractal dimension and its global Lyapunov exponents [1]. In chaotic systems, points
on an attractor diverge or converge exponentially quickly [41]. We know that a strange
attractor is an attractor that exhibits sensitive dependence upon initial conditions. Thus,
given an N–dimensional sphere of initial conditions, we can demand that the radius of the
sphere be infinitesimally small and we will still have initial conditions that differ from each
other enough that the sphere spreads out into an N–dimensional ellipsoid as time evolves.
We can describe the time–dependent kth–principle axis of the ellipsoid by δk(t) ∼ δk(0)eλkt

(we may consider δk(0) the distance of the kth initial condition from the center of the initial
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Figure 3: The strange attractor formed by the Lorenz Equations (equations 1–3), with
σ = 10, b = 8/3, and r = 28. The upper left–hand panel shows a 3–D box plot of the set,
while the other three panels show each of the three possible planes.

sphere) so that if at least one λk is positive, that principle axis will stretch the sphere in
the kth direction. Note that this exponential time dependence appears here as an ansatz,
but is in fact predicted by Oseledec’s multiplicative ergodic theorem [24]. If time evolves
for long enough, the ellipsoid of initial conditions will be so stretched out over the attractor
that we will have reached a point at which prediction breaks down [41]. We shall revisit
the concept of Lyapunov exponents in §4

Now we can be exact when we speak of sunspot counts and solar activity as chaotic.
When we hypothesize that solar activity follows a chaotic cycle, we imply that the magni-
tude of the current cycle depends in some way on the previous cycle or previous cycles, that
the evolution through time of the solar cycle is sensitive to conditions at an earlier time,
and that we can find an attractor that contains the information we need to understand the
relevant dynamics. We are interested in describing the chaotic evolution of sunspot counts
and other dynamical variables related to the Sun in order to determine which (possibly
constant or periodic) physical drivers may be responsible for chaotic variations in solar
activity, and then to use that knowledge to predict solar activity as far in the future as
possible.
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4 Nonlinear Analysis of Time Series Data

When presented with a time series that does not exhibit periodic behavior, we can still
attempt to analyze the underlying dynamics by assuming that the data posses a nonlinear
dependence. There exists a systematic method for uncovering dynamical dependence on
multiple time scales known as attractor reconstruction, though determination of the correct
value of certain parameters is not always simple. In order to suss out nonlinear time
dependence from a vector x(t) of scalar values sampled at discrete time points (i.e. a time
series), we construct the N–dimensional vector

y(t) = (x(t), x(t+ τ), ..., x(t+ (N − 1)τ))

Therefore, we must know a priori the appropriate values ofN and τ with which to construct
y(t) (cf [41] and [1], but note that notations among this work and those two works differ).
If the “embedding dimension” N is chosen to be too small, we can not construct y(t) such
that it completely unfolds the dynamics of x(t); if we choose N to be too large, noise will
appear to be linked to the dynamics [11]. On the other hand, if we choose the “time delay”
τ to be too small, the resultant components of y(t) will not be distinct enough to give
us information about how the system evolves; if we choose τ to be too large, the intrinsic
instability of the dynamics will cause x(t) and x(t + τ) to act like random data points
with respect to each other [1]. This intrinsic instability is, of course, a result of a positive
maximum global Lyapunov exponent.

In our discussion of Lyapunov exponents above (see §3), we claimed that if at least
one Lyapunov exponent is positive, and if time evolves “long enough”, arbitrarily–close
initial conditions will diverge so much that predictions based on the original information
will break down. This amounts to two limiting processes: one as time goes to infinity, and
the other as distance between nearby initial conditions goes to zero. Mathematically, we
have

λj = lim
t→∞

lim
δ0→0

(
1

t

∣∣∣∣δ(xj , t)δ0

∣∣∣∣) (7)

Equation 7 is a definition, but it is not a very useful prescription for calculating the
spectrum of global Lyapunov exponents from time series data. In effect, what we are
doing when we calculate Lyapunov exponents is examining the stability of the dynamics to
perturbations. Given a map f(y) that takes a point on the attractor yi to the point yi+1,
we consider a perturbation to first order:

yi+1 + δi+1 = f(yi + δi) ≈ f(yi) +
∑
a,b

∂fa(yi)

∂xb
· δi

δi+1 ≈
∑
a,b

∂fa(yi)

∂xb
· δi (8)
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where the last simplification comes from the definition of the map f(yi) = yi+1 [1]. Thus,
to first order, we are actually interested in the Jacobian matrix of f(yi). After applying
this map a large number (call it n) of times, we can expect to learn about the stability of
nearby initial conditions at long times. This last process relies on composing the Jacobian
matrix with itself n times and forming the following matrix prescribed by the Oseledec
multiplicative ergodic theorem mentioned in §3

O =


∑
a,b

∂fa(yi)

∂xb

T ·∑
a,b

∂fa(yi)

∂xb


1/2n

(9)

Finally, the logarithms of the eigenvalues of O as n→∞ are the global Lyapunov exponents
[2], [1].

What if n is not large? can we will learn information about the dynamics from the
ratio inside the parentheses in Equations 7 or from the logarithms of the eigenvalues of
O? The answer is yes. These quantities, for finite time or n not large, are called the
local Lyapunov exponents. Abarbanel et al. found that local Lyapunov exponents are
relevant for predicting short–term dynamics or for characterizing the average variation of
Lyapunov exponents over the attractor, as opposed to describing the long–term evolution
of trajectories on the attractor [2]. The local Lyapunov exponents also provide a measure of
the “heterogeneity” of the system in that they can characterize short–term chaotic behavior
in an otherwise non–chaotic system [3].

5 The Solar Dynamo

Early analysis of the inner dynamics of the Sun focussed on hydrodynamic effects. Csada
considered the fluid motion of the Sun, including differential rotation and meridional cir-
culation, but neglected electromagnetic effects [12]. However, research has since shown
that the electromagnetic induction that arises via differential rotation is the most effective
mechanism for generating the toroidal fields seen in the solar dynamo [35]. In what follows,
we will refer loosely to four main spherically–symmetric regions (RS denotes the radius of
the Sun): 1. the radiative zone, extending from the core out to ∼ 0.7RS , in which rotation
is thought to be latitudinally uniform, 2. the convective zone, which lies between the radia-
tive zone and the photosphere at ∼ 1RS and exhibits latitudinally–varying rotational rates
(differential rotation), 3. the tachocline, which lies at the interface between the radiative
and convective zones, and 4. the overshoot layer, in which the convective zone spills briefly
over into the radiative zone. Figure 4 shows a cartoon schematic of the inside of the Sun.

The early theory of Parker is regarded as seminal work in the development of solar
dynamo theory [33], [32]. He acknowledged that the single relationship between a magnetic
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Figure 4: Cartoon representation of some major features of the Sun. The radiative zone ex-
tends out to ∼ 0.7RS , with the convective zone covering the balance out to the photosphere.
The tachocline (not labeled) sits at the interface between the radiative and convective zones
and the overshoot layer lies just below the tachocline. Image credit: Encyclopedia of the
Earth (http://www.eoearth.org/article/Solar_radiation)

field and a fluid flow given by

∂B

∂t
= ∇× (v ×B) +

1

µσ
∇2B (10)

can not maintain both a poloidal magnetic field and a toroidal magnetic field, but found
that an existing poloidal field can generate a toroidal field that would then regenerate
the poloidal field through Equation 10 [32]. Given a poloidal magnetic field generated
by a rotating conducting core, differential shearing can deform field lines by stretching
them in the azimuthal direction, thereby generating a toroidal magnetic field (cf [35]
and [30]). Once this toroidal field has been established, radially–rising cyclones in the
radiative zone push radial field lines outward until they exhibit a non–axisymmetric bulge
(imagine the capital letter omega: Ω). The cyclonic motion of these convective structures
twists the bulged field line to give it a component parallel to the meridional plane, thereby
regenerating the poloidal magnetic field [32]. We have come to refer to the generation
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of toroidal magnetic fields via differential rotation as “the Ω effect” (this is in reference
to the differential rotation, and is not to be confused with the Ω used to visualize radial
stretching of toroidal field lines), and to the generation of poloidal magnetic fields via
twisting of toroidal field lines as “the α effect” [20].

We have seen that the cyclonic flows proposed by Parker are crucial for generating the
toroidal magnetic field at the interface between the radiative and convective zones, but
the convective zone proper has its own characteristic flow that supports the solar dynamo.
Choudhuri et al. developed a model that coupled the solar surface to the low–latitude
base of the solar convective zone via large–scale meridional circulation [10]. Observational
evidence suggests poleward meridional flows at the surface, while mass conservation sug-
gests closure through equatorward flows at the base of the convective zone [9]. They noted
that when the meridional circulation occurred on a timescale shorter than that of magnetic
diffusion through the convective zone, rising loops of buoyant toroidal flux (a topic to be
addressed in greater detail below) would produce butterfly diagrams in qualitative agree-
ment with observation, and postulated that this effect is due to overcoming constraints
imposed by coupling the two layers simply through diffusion. A decade later, [22] provided
evidence that the solar dynamo is a diffusive dynamo. The meridional flow also acts upon
decaying bipolar sunspot pairs to cause a net magnetic flux to move poleward, which, in
turn, reverses the older polar field and builds up the poloidal field for the next cycle [30].

One final piece of the solar magnetic puzzle is the diffuse field that exists in the regions
not occupied by sunspots. We will not consider this diffuse field here. However, the last
few years of model and observational evidence have shown that this diffuse magnetic field
gives important information about the dynamo process [9]. Therefore, we would be remiss
to not mention it at all.

Now that we have established a foundation for understanding the solar dynamo process,
we move onto sunspot formation proper. To begin our consideration of sunspot formation,
we return to Parker, who remarked even in 1955 that the fact that overall visible changes
in the corona are in step with magnetic activity suggests that “sunspots and prominences
are not just individual isolated magnetic phenomena but are secondary effects of a general
solar magnetic cycle” [32]. In fact, he had already acknowledged, earlier the same year,
that if a closed loop of magnetic flux (hereafter referred to as a “flux loop” or “flux tube”)
contained in the toroidal magnetic field is in pressure equilibrium, then the external fluid
pressure should be in balance with both the internal fluid pressure and the internal magnetic
pressure [33] (cf [30]):

pext = pint +
B2

8π
(11)

Thus, there will be a net (hydrostatic) buoyant force on the flux loop since pint < pext and
the loop, or a portion thereof, will begin to rise. Furthermore, if the length of flux loop that
begins to rise is twice the scale height of the medium, fluid will flow along the tube in an
attempt to balance the hydrostatic pressure, thereby increasing the buoyancy and causing
the loop to continue its rise [33]. Finally, if a buoyant flux tube rises high enough through
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the convective zone to reach the photosphere, it will break through, as illustrated in Figure
5, and the visible result is a bipolar pair of regions of increased magnetic flux. The strong
magnetic fields contained in the bipolar pair inhibit convective energy transport, thereby
cooling the regions and causing them to appear darker than the surrounding photosphere
[18]. Of course, these darker regions are what we know as sunspots.

The natural question to ask now is, “What causes toroidal flux tubes to form in the
first place?” Without direct evidence of the inner workings of the Sun, we must rely upon
models whose accuracy we gauge by assessing how well they produce observable features
(e.g. emergence latitudes of sunspots and surface magnetic fields). A realistic starting point
is unstable mechanical equilibrium in the thin convective overshoot region that lies just
below the surface of the radiative zone. We suppose that the (toroidal) flux tube evolves
through a series of stable mechanical equilibria, all the while being stretched azimuthally
by differential rotation. At some point, the magnetic pressure inside the tube becomes so
great that it begins to experience the magnetic buoyancy instability given by Equation 11
and it begins to rise [38]. The flux tube is also subject to instabilities arising from fluid
undulations in the overshoot layer, so that the creation of unstable rising flux loops from
toroidal field loops in mechanical equilibrium is not uncommon [5].

What did come as a surprise to researchers developing models of flux–tube generation
and transport was the fact that, in order that these destabilized loops not be too strongly
influenced by the Coriolis force (which would cause their emergence latitudes to be higher
than those observed), the magnetic field in the overshoot layer had to be an order of
magnitude greater than the equipartition value for kinetic and magnetic energy. This
super–equipartition magnetic field also means that flux tubes in the overshoot layer will
be even more unstable to undular perturbations [5].

Of course, the toroidal flux tubes could begin from thermal equilibrium as opposed to
mechanical equilibrium, as many authors had been merely assuming through the late 1990s.
However, Caligari et al. found that calculations starting from thermal equilibrium were
unable to explain why flux loops with magnetic field strengths smaller than those observed
should not also erupt through the photosphere. Their explanation, which they support with
model results, relies on the fact that flux tubes beginning in mechanical equilibrium in the
convective overshoot layer must develop the super–equipartition magnetic field before they
become unstable and rise out of the overshoot layer [6]. This strong field further keeps the
flux loops anchored in the overshoot layer (ibid).

The preceding is intended to provide a summary of developments in solar dynamo
theory in order to build a context in which to place our analysis of sunspot counts and
solar dynamics. Of course, we have fallen far short of providing an exhaustive review of
the subject. There are many books, conference proceedings, and journal articles that treat
observational or model data and the field is still quite active. In addition to the references
listed here, the interested reader is referred to [14] for a good review of solar dynamo theory
and models of sunspot formation within the rising–flux–tube paradigm.
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Figure 5: Cartoon representation of “what is (probably) going on below the visible surface”
when a toroidal magnetic flux tube rises through the convective zone, then breaks through
the photosphere to form a bipolar sunspot pair. Image credit: [14]

6 Data and Software

Let us now move on to analysis of sunspot counts and solar motion. Time series of sunspot
counts are available on various time scales, with uncertainty in count increasing for dates
further back in history. In this study, we use data of monthly sunspot counts spanning the
time period 1749–2010 (i.e. roughly 6 years before the beginning of Cycle 1 through the
present), available at http://solarscience.msfc.nasa.gov/SunspotCycle.shtml. The
time series produced from these data is shown in Figure 6

Since we are also interested in the dynamics of the Sun, we obtained solar position
and velocity data from the National Aeronautics and Space Administration Jet Propulsion
Lab (NASA JPL) planetary ephemerides program, available at http://ssd.jpl.nasa.

gov/?ephemerides#planets. An ephemeris is a data file giving the calculated positions
of a celestial object at regular intervals throughout a period; the NASA JPL solar system
ephemerides use Chebychev polynomials to interpolate between observations of objects
in the solar system including the Sun and all nine planets. Observations are made at
approximately 32–day intervals. Position and velocity data are available in reference to
the center of the Sun or the center of gravity (also known as the barycenter) of the solar
system. As with sunspot counts, data is available on different time scales, with varying
precision. We use high–precision data spanning the period 1600–2099, where the data
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Figure 6: Monthly counts of sunspots since 1749.

beyond January 2011 are projected values.
We used numerical differencing of the velocity data to calculate the acceleration of the

Sun about the barycenter of the solar system, which allowed us to calculate the force on the
Sun through Newton’s second law. The data for the magnitude of the Sun’s acceleration

(|a| =
√
a2x + a2y + a2z) is plotted in Figure 7

In order to analyze the data, we employed algorithms written in the MATLAB c© pro-
graming language, available at the MATLAB c© file exchange (http://www.mathworks.
com/matlabcentral/fileexchange/). The first algorithm, chaosfn.m, employs a neural
network optimization approach to determine the spectrum of Lyapunov exponents for a
given data series. The second function, chaostest.m, performs a statistical significance test
on the maximum Lyapunov exponent returned by chaosfn.m to determine the probability
that the returned value could have occurred by chance. This statistical test accounts for
noise in the input data series. A third function, embdsymplec.m employs a symplectic ge-
ometry method to estimate the attractor embedding dimension that avoids short–comings
of other embedding dimension algorithms [25]. In short, symplectic geometry is a natural
(i.e. measure–preserving) way in which to perform the transformations necessary to de-
termine the amount of mutual information contained in the data x(t). Finally, a fourth
function, optim m tau.m was used to confirm our own trial–and–error estimate of time
delay τ . This function employs a differential entropy scheme, which is to say that it calcu-
lates the smallest value that contains the contains the dynamical variations. Thus it also
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Figure 7: Magnitude of the Sun’s acceleration spanning the period 1600–2099, where pro-
jected values are shown for dates after January 2011. The data were derived numerically
from NASA JPL ephemerides.

returns the minimum attractor dimension.

7 Results

Estimation of the global Lyapunov exponents for sunspot number (s) and magnitude of
solar acceleration (a) suggest that both time series are chaotic and have maximum global
Lyapunov exponent λs u 0.056 month−1 and λa u 0.079 day−1, respectively. The low
values of these numbers with respect to unity suggest that divergence of nearby initial
conditions is slow in time. However, there will still be a time after which prediction breaks
down. The first result actually corroborates qualitatively a result found be Mundt et al. in
1991 [28]. Those authors used smoothed counts of sunspot numbers to derive an estimated
average maximum global Lyapunov exponent λs u 0.02 month−1. To our knowledge,
this is the first time that an estimate for the maximum global Lyapunov exponent of the
magnitude of solar acceleration (or any solar dynamic quantity, for that matter) has been
reported. The finding is encouraging because it indicates the realm of analysis in which we
ought to work when attempting to identify the mechanism underlying variation in sunspots
and solar activity in general. That is to say that, provided this result stands up to further
analysis, we need not spend our time trying to construct linear models in an attempt to
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predict solar activity at arbitrarily–long times in the future.
Preliminary exploratory work by UNH Department of Mathematics and Statistics grad-

uate student Yibin Pan suggested that τ = 16 was a suitable value for the sunspot attractor
delay time [31]. We considered this value reasonable, since Mundt et al. reported using a
value of τ = 10 for their smoothed data. The routine optim m tau.m returned the value
τ = 17. The routine also found that the minimum attractor dimension should be m = 2.
For comparison, Mundt et al. estimated the embedding dimension of the sunspot attractor
to be N = 3, then estimated the fractal attractor dimension to be d u 2.3 [28], which
indicates that m = 2 for their study as well.

We initially attempted to näıevly reconstruct the solar dynamic attractors by assuming
an embedding dimension of N = 3. In doing so, we found that τ = 366 days seemed to
best unfold the attractor. Happily, the routine optim m tau.m estimated the optimal delay
to be τ = 361, validating our trial–and–error value.

As for the attractor embedding dimension, the function embdsymplec.m, returned the
values N = 1 and N = 7 for sunspot count and magnitude of solar acceleration, respec-
tively. The first value seems to be outright wrong: the embedding dimension should be
greater than the attractor dimension and should certainly not be smaller than the mini-
mum attractor dimension! It is possible that the time series is too short for the algorithm
to correctly identify N . With respect to the acceleration magnitude, however, we can share
the following evidence that it may be correct, and not simply an artifact of numerical dif-
ferentiation: We checked the value of N returned by embdsymplec.m for both the position
and velocity time series provided by the NASA JPL ephemerides and found that N = 3 in
each case. In order to derive acceleration data from velocity data, we used the Interactive
Data Language (IDL) routine deriv.pro, which employs three–point Lagrangian interpola-
tion. Therefore, we suspected that numerical differentiation may have introduced nonlinear
correlations that were not representative of the underlying physics. To test this hypothesis,
we performed the same numerical differentiation on the position ephemerides to obtain a
second velocity time series. Using this as input to embdsymplec.m again resulted in the
value N = 3, lending credence to the value of N = 7 obtained for acceleration magnitude.

8 Discussion

Certain previous studies have attempted to extract a direct planetary influence on solar
activity by drawing links between planetary motions and sunspot counts. An early advocate
for planetary tidal forcing was P. Jose, who took a cue from Isaac Newton to consider
the Sun’s complicated motion about the solar system barycenter [23]. He established
that certain solar parameters of motion, most notably the Sun’s instantaneous angular
momentum about the solar system barycenter have a period of 178.7 years. He then
examined data of sunspot counts and found a 178.55–year period cycle, which he concluded
was a “more realistic period for the sunspot cycle” (ibid).
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More recently, work by two separate authors has attempted to find similarities between
periods in the sunspot cycle and periods derived from planetary orbits by summing, identi-
fying harmonics, and calculating beats frequencies. In 2007, Charvátová identified a period
in the motion of the inner planets that is similar to short–scale fluctuations in certain solar
parameters identified by other researchers (see references therein), but did not propose a
mechanism [8]. Scafetta noted numerous previously identified periods in the sunspot cycle
ranging from a 60– to 65–year period to an 800– to 1200–year period [36] (and references
therein). In that work, he claimed that planetary forcing at the period of some set of
orbital harmonics could act to constrain solar dynamics to an “ideal cycle” about which
solar activity fluctuates chaotically (ibid).

We have found, using a method described by Strogatz [41], an additional frequency
attributable to planetary motion. That author identifies the compromise frequency of
two coupled nonlinear oscillators as the “stable, phase–locked solution” approached by the
trajectories of the combined system on the relevant attractor. Using stability analysis of
the phase different between the two oscillators, he defines the compromise frequency as

ω∗ ≡ k1ω2 + k2ω1

k1 + k2
(12)

In order to explore the implications of this quantity to the problem of planetary forcing,
we coupled Jupiter and Saturn (the two most massive planets in the solar system) through
their mutual gravitational potential. Thus we identify the following quantities:

k1 =
GmJ

r2JS
k2 =

GmS

r2SJ
ω1 = 2πfJ ω2 = 2πfS

where mJ and mS are the respective masses of Jupiter and Saturn, r2JS = r2SJ is the square
of the distance between Jupiter and Saturn, G is Newton’s gravitational constant, and
fJ and fS are the respective orbital frequencies of Jupiter and Saturn. By substituting
these quantities into Equation 12 and realizing that the period τ is related to the angular
frequency ω by τ = 2π/ω, we were able to calculate the compromise period for Jupiter and
Saturn:

τ∗ =

(
mJ +mS

τJmJ + τSmS

)
mJmS ≈ 22 yr (13)

It is encouraging to find that this quantity is approximately equal to the magnetic cycle of
the Sun.

In the previously referenced article by Scafetta, [36], the author cites a critique by
Smythe and Eddy [39] of the planetary forcing argument. In response to [39], who argued
that patterns of (quasi–periodic) tidal forces show no correlation with grand minima such as
the Maunder Minimum, Scafetta notes that those authors did not account for the fact that
solar variations must arise from coupling between the internal solar dynamo and external
planetary forces [36].
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A more recent critique of planetary forcing argues that the contributions to the accel-
eration on the Sun near the tachocline and convective overshoot region are negligible with
respect to the acceleration on those regions due to the Sun’s motion about the solar system
barycenter alone [7]. The authors make a quite compelling argument, but they admit that
they can not exclude the possibility that long–term planetary influences may contribute
in a small but non–negligible way to internal motions of the Sun, albeit indirectly. As an
example, they cite the curious Gnevyshev–Ohl rule, which states that when solar cycles
are arranged in pairs in which the even–numbered cycle follows the odd–numbered cycle,
there is a strong trend toward a higher number of sunspots in the odd cycle than in the
even cycle (cf [29], [19]).

In fact, the acceleration on the center of mass of the Sun is quite small (O(10−7)), as
can be seen in Figure 7. However, we have seen that the solar dynamics relevant to the
sunspot cycle occur at ∼ 0.7RS . Therefore, we are more concerned with the torque on
fluid parcels in the convective overshoot layer, tachocline, and convective zone proper. A
theoretical analysis by Wolff and Patrone suggests that coupling between the Sun’s orbital
motion and its angular acceleration about the solar system barycenter can increase the
potential energy of certain correctly–positioned fluid elements [48]. The authors seem to
imply that the planets must have some influence on this effect, since they, along with the
Sun, define the barycenter of the solar system. It is worth noting that the authors of [7]
were aware of this study but did not address it in detail.

The concept of short–term gravitational influences, as well as the notion that there may
be portions of the solar cycle that are chaotic [22] but are constrained by deterministic
oscillations (e.g. those of the planets as mentioned in [36], see paragraph 2 of this section)
suggests that the next step toward understanding how solar dynamics relate to variations
in solar activity is to characterize the local Lyapunov exponents of solar motion.

As a final note, future studies may benefit by examining activity in other stars, and
using similarities and differences in theoretical structure of those stars, as well as the sur-
rounding planetary environment, to support or eliminate mechanisms proposed for varia-
tion in solar activity. The “H–K” Project, conducted at the Mount Wilson Observatory
in California, identified roughly a dozen slowly–rotating stars that exhibit quasi–periodic
activity similar to that observed on the Sun [46]. Specifically, the comparison of rotation
rate and activity cycle period of some K–class stars to those of our Sun (a G–class star)
lead those authors to the conclusion that main sequence G– and K–class stars with certain
parameters similar to the Sun’s (e.g. age and rotation rate) can exhibit similar activity.
However, observations of stellar activity have also revealed G–class stars with very little
activity, so results are not yet conclusive (ibid).
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9 Conclusions

To the typical observer, the Sun traces out a slow arc over the course of a day, and though
the elevation of that arc may change drastically over the course of a year, or even disappear
for some time at polar latitudes, it remains comfortingly predictable. Of course, those who
work in space science (or know someone who does) may occasionally receive updates about
potentially harmful or “geoeffective” solar activity (e.g. flares and CMEs), but even those
reports do not do justice to the chaotic stew that boils below the photosphere. In this
report, we have considered the history of the development of sunspot counts, the framework
of chaos theory and nonlinear time series analysis, and current theoretical understanding
of the solar dynamo. Furthermore, we have attempted to marry these topics toward the
ultimate end of improving the space weather community’s ability to reliably predict solar
activity.

We have found that

1. The sunspot count is chaotic with a maximum global Lyapunov exponent λs u
0.056 month−1, qualitatively confirming a previous result which used smoothed data
[28],

2. The magnitude of solar acceleration is chaotic, with a maximum global Lyapunov
exponent λa u 0.079 day−1, and

3. The embedding dimension of solar acceleration magnitude is likely as high as N = 7,
while results for the embedding dimension of sunspot counts were inconclusive.

The results presented here represent preliminary results in a study that requires a great
deal of further work. Nevertheless, we hope to use these findings as a starting point to
establish a mechanism by which chaotic solar dynamics produce observed sunspot counts,
and to construct an algorithm that can reliably predict solar activity far enough into the
future to be beneficial to life on Earth. We have acknowledged the attempts to attribute
chaotic solar activity to planetary tidal forces [23], [8], and [36], as well as an attempt to
characterize the chaos in sunspot counts [28]. However, we believe that no one has yet
undertaken the task of connecting the mathematical framework of chaos with the physical
framework of solar dynamo theory.
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