Academic Course Track

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin your program sequence with Perspectives in Electrical and Computer Engineering and your other required 400 & 500 level ECE & CS courses.</td>
<td>Continue your program sequence with your 500 level ECE & CS courses.</td>
<td>Continue your program sequence with 500 & 600 level ECE courses.</td>
<td>Complete your program sequence 700 level ECE courses including Senior Project & ELL.</td>
</tr>
<tr>
<td>Begin your math sequence.</td>
<td>Begin your math sequence.</td>
<td>Continue your math sequence.</td>
<td>Complete professional electives with the support of your program advisor.</td>
</tr>
<tr>
<td>Begin Discovery program electives, including First Year Writing and other Principles of Economics or Environmental and Resource Economic Perspectives.</td>
<td>Continue Discovery program electives.</td>
<td>Continue Discovery program electives if needed.</td>
<td>Complete Discovery program electives.</td>
</tr>
</tbody>
</table>

Fast Track Your Professional Skills by Presenting Your Research, Projects, and Capstone/Thesis Experiences at the Undergraduate Research Conference-Interdisciplinary Science and Engineering Symposium

Wildcat Way to Professional Success

Build Awareness
- Identify your interests, skills, and values
- Learn about your field of interest: industry areas, job types/titles, growth projections
- Map your skills to industry needs
- Understand the career paths of fellow students and alumni
- Create and update career documents
- Create and practice your professional pitch
- Develop your LinkedIn profile
- Practice interviewing for your specific industry/field and professional goals
- Cultivate your professional image

Build Professional Image
- Academics: Engage in research and field experience
- Publish your research and papers
- Present at professional conferences and competitions
- Secure a Teaching Assistant, Lab Assistant, or tutoring position
- Consider submitting your research to appropriate engineering and science journals

Build Experience
- Learn about all of the resources available on campus
- Volunteer to support your local or global community
- Join and participate in clubs and/or student organizations
- Pursue student leadership positions

Build Relationships
- Build professional and personal networks
- Attend employer events on campus and in the community
- Conduct informational interviews
- Secure 3-5 professional references
At the University of New Hampshire, students develop personal and professional skills by following the Wildcat Way to Professional Success. This model is designed to provide guidance and recommended action steps throughout the UNH experience, equipping students with the knowledge and tools to thrive in an ever-changing future.

EXPERIENTIAL LEARNING

Learning happens not only in the classroom and on campus, but also, and equally as important, through hands-on interactions and engagement with industry, national labs, NSF-REUs, and other organizations and partners. Experiential learning helps students to “connect the dots” and explore the link between academic interests and potential career paths. Students participate in experiential learning at a variety of sites, including:

- Aquabotix
- BAE Systems
- Dyncom Industries
- General Dynamics Electric Boat
- Kepware Technologies
- Teradyne

GRADUATE SCHOOL

Graduates from the CEPS Class of 2017 enrolled in masters and doctoral programs at the following institutions:

- University of New Hampshire
- Clemson University
- Colorado State University
- Duke University
- Rensselaer Polytechnic Institute
- Stanford University
- Technical University of Munich
- Texas A&M
- Tufts University
- University of Colorado Boulder
- University of Michigan

POTENTIAL CAREERS

Computer Engineering

Employment of computer hardware engineers is projected to grow 5 percent from 2016 to 2026, about as fast as the average for all occupations. A limited number of engineers will be needed to meet the demand for new computer hardware because more technological innovation takes place with software than with hardware. However, demand may grow for hardware engineers as more industries outside of the computer and electronic product manufacturing industry begin to research and develop their own electronic devices. Thus, although declining employment in the manufacturing industries that employ many of these workers will impede the growth of this occupation, computer hardware engineers should be less affected than production occupations because firms are less likely to outsource this type of work.

An increase in hardware startup firms and the ongoing increase in devices with computer chips embedded in them, such as household appliances, medical devices, and automobiles, may lead to some job growth for computer hardware engineers. Potential careers include, but are not limited to:

- Computer Engineer
- Computer Hardware Engineer
- Software Engineer
- Web Programmer
- Application Specific Integrated circuit (ASIC) design Engineer
- Fiber-Optics Network Designer
- Hardware Circuit Board Design
- Network Test Engineer
- Network Systems Engineer