WILDCAT WAY TO PROFESSIONAL SUCCESS

BUILD AWARENESS
- Identify your interests, skills, and values
- Learn about your field of interest: industry areas, job types/titles, growth projections
- Map your skills to industry needs
- Understand the career paths of fellow students and alumni
- Create and update career documents
- Create and practice your professional pitch
- Develop your LinkedIn profile
- Practice interviewing for your specific industry/field and professional goals
- Cultivate your professional image

BUILD PROFESSIONAL IMAGE
- Engage in research and field experience
- Publish research and papers
- Present at professional conferences and competitions
- Secure a Teaching Assistant, Lab Assistant, or tutoring position
- Take part in the Undergraduate Research Conference
- Take part in the Undergraduate Research Conference
- Consider submitting your research to appropriate engineering and science journals
- Learn about all of the resources available on campus
- Join and participate in clubs and/or student organizations
- Pursue student leadership positions
- Professional

ACADEMIC
- Shadow professionals and companies of interest
- Secure at least one internship
- Get a part-time job to build other transferable skills
- Search through Wildcat Careers, indeed.com, and pay attention to department and career weekly emails

CO-CURRICULAR
- Build professional and personal networks
- Attend employer events on campus and in the community
- Conduct informational interviews
- Secure 3-5 professional references

BUILD EXPERIENCE

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>SECOND YEAR</th>
<th>THIRD YEAR</th>
<th>FOURTH YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin your program sequence with Perspectives in Electrical and Computer Engineering and your other required 400 & 500 level ECE & CS courses.</td>
<td>Continue your program sequence with your 500 level ECE courses.</td>
<td>Complete your program sequence with 600 level ECE courses.</td>
<td>Complete your program sequence with 700 level ECE courses including Senior Project I & II.</td>
</tr>
<tr>
<td>Begin Discover program electives, including First Year Writing and either Principles of Economics or Environmental and Resource Economics Perspectives. Begin your math and science sequences.</td>
<td>Continue with your Discover program electives.</td>
<td>Continue with your Discover program electives, completing your math/science electives.</td>
<td>Complete Discover program electives with the support of your program advisor.</td>
</tr>
<tr>
<td></td>
<td>Continue and potentially complete your science sequence.</td>
<td>Continue your math sequence.</td>
<td>Complete Discover program electives.</td>
</tr>
</tbody>
</table>

BUILD RELATIONSHIPS
- Build professional and personal networks
- Attend employer events on campus and in the community
- Conduct informational interviews
- Secure 3-5 professional references

FIND YOUR PROFESSIONAL SKILLS BY PRESENTING YOUR RESEARCH PROJECTS, AND CAPSTONE/THESIS EXPERIENCES AT THE UNDERGRADUATE RESEARCH CONFERENCE - INTERDISCIPLINARY SCIENCE AND ENGINEERING SYMPOSIUM
At the University of New Hampshire, students develop personal and professional skills by following the Wildcat Way to Professional Success. This model is designed to provide guidance and recommended action steps throughout the UNH experience, equipping students with the knowledge and tools to thrive in an ever-changing future.

EXPERIENTIAL LEARNING

Learning happens not only in the classroom and on campus, but also, and equally as important, through hands-on interactions and engagement with industry, national labs, NSF-REUs, and other organizations and partners. Experiential learning helps students to “connect the dots” and explore the link between academic interests and potential career paths. Students participate in experiential learning at a variety of sites, including:

- Allegro Microsystems, LLC.
- BAE Systems
- Lockheed Martin
- Raytheon
- Schneider Electric
- Teradyne

GRADUATE SCHOOL

Graduates from the CEPS Class of 2017 enrolled in masters and doctoral programs at the following institutions:

- University of New Hampshire
- Clemson University
- Colorado State University
- Duke University
- Rensselaer Polytechnic Institute
- Stanford University
- Technical University of Munich
- Texas A&M
- Tufts University
- University of Colorado Boulder
- University of Michigan

POTENTIAL CAREERS

Electrical Engineering

Overall employment of electrical and electronics engineers is projected to grow 7 percent from 2016 to 2026, about as fast as the average for all occupations. The change in employment is expected to be tempered by slow growth or decline in most manufacturing industries in which electrical and electronics engineers are employed.

Job growth for electrical and electronics engineers is projected to occur largely in engineering services firms, as more companies are expected to tap the expertise of engineers in this industry for projects involving electronic devices and systems. These engineers also will remain in demand to develop sophisticated consumer electronics.

The rapid pace of technological innovation will likely drive demand for electrical and electronics engineers in research and development, an area in which engineering expertise will be needed to design distribution systems related to new technologies. These engineers will play key roles in new developments with solar arrays, semiconductors, and communications technologies. The need to upgrade the nation’s power grids will also create demand for electrical engineering services. Additionally, these engineers may play a role in assisting with the automation of various production processes. Potential careers include, but are not limited to:

- Controls Engineer
- Electrical Engineer
- Nuclear Systems Engineer
- QA/QC Engineer
- Reliability Engineer
- Test Engineer