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For many students, the topic of logarithms is hard to swallow for two big reasons:  
 

• Logarithms are defined in such a ''backwards'' way that sometimes students see only the 
rules for using them, and can't get a good picture of what they are.  
 

• Tables of logarithms were originally constructed to make calculations easier. And of 
course everybody uses calculators for this purpose now! So it often happens that students 
find themselves in a university calculus course without much prior experience with 
logarithms.  
 

It's not hard to see why the definition of a logarithm has this backwards-looking flavor: the log 
functions are, after all, inverses to important exponential functions. But this is the very reason 
they are still indispensable!  
 
They are the functions we need, (in combination with their companion exponential functions) to 
describe exponential growth.  
 
Every situation in which the growth-rate of a quantity is proportional to its present level is 
described by an exponential function.  
 
Example: Although a country's birth rate is affected by other factors as well, it will be 
proportional to the country's present population. Every year, there are more babies born in New 
York City than in Durham, New Hampshire. This is true of other kinds of ''populations'' as well: 
dollars, or fish, or bugs, or radioactivity. The logarithm and exponential functions describe them 
all.  
 
1.  Why use two systems of logarithms? 
 
When the first tables of logarithms were worked out (to help 17th-century sailors do the 
calculations that kept them from being lost on the seas) they were based on a decimal number 
system. Count your fingers and you'll see why.  
 
The really odd thing is, that nature loves logarithms too (and Mother Nature isn't biased in favor 
of the number 10). If you take calculus you will see that the definite integral  
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(which is a function of its variable upper limit x) has all the properties a logarithm function ought 
to have. It is the logarithm function that Nature provides. Its corresponding exponential function 
is exp(x), or ex; and its base is the ''natural number'' e ≅ 2.718.  
 
The 10-based ''common'' logarithms and the natural logarithms follow the same rules. Their 
values are even proportional to each other.  
 
It would actually be possible to construct a system of logarithms based on any positive number. 
Most people figure, the two we have will do nicely.  
 
2.  Defining logarithms 
 
We'll start with the common, 10-based logarithms. The idea is to think of each number as a 
power of 10:  
 

Number  Re-written as a power  Number's logarithm  
1  100  0 
10  101  1 
100  102  2  
1000  103  3  
10000  104  4 

1,000,000  106  6  
0.01  10−2  −2 

0.00001  10−5  −5  
 

When a number is rewritten as a power of 10, 
its common logarithm is just the exponent.  

 
 
Of course, we don't have many numbers in our table yet! But you can already see a few things:  
 

• When we multiply numbers, the logs are added. Notice, for example, that  
 

                    log(100×10,000) = log(1,000,000)  
= log (106)  
= 6 

 and also that 
 

          log(100) + log(10,000)  = log(102) + log(104)  
= 2 + 4  
= 6 

 Thus, 
 



                     log(100×10,000) = log(100) + log(10,000) 
 

• When we divide numbers, the logs are subtracted. For example, 
 

   

= log (104)  
= 4 

 and also that 
 

               log(100) - log(0.01)  = log(102) - log(10-2)  
= 2 – (-2)  
= 4 

 Thus, 
 

   
 
 

 
• If we square a number, its log doubles. For instance, the log of (103)2 is 6, which is twice 

the log of 103.  
 

• We only have logs for positive numbers. Some of the logs are negative: they are the logs 
of numbers smaller than 1.  

 
 

The first tables of logarithms were constructed by John Napier, working in his castle at 
Merchiston in Scotland. It took him a good 20 years, and it's all the more remarkable because he 
didn't even have exponential notation to work with.  
 
Nevertheless Napier's ''wonderful reckoning numbers'' are exponents. There are other ways of 
calculating logarithms now, and by the time you study power series in calculus you'll see how it 
can be done. For the time being, try out a few of them with your calculator. You should be 
aware the logarithms are real numbers, which we can only approximate using decimals. So 
it's only to be expected that the decimal numbers you'll see require some rounding before 
you recognize them as the numbers they really are!  
 

• The common logarithm of 3 is (to five figures, at least) 0.47712. Try it on your 
calculator. Ask the calculator for 100.47712, and your answer should be about 3. 
 

• Use your calculator to approximate log(8). To five figures, it should be 0.90309. That 
tells us that 100.90309 ≅ 8 (use your calculator to verify this).  

 
• The sum of 0.90309 and 0.47712 is 1.38021. What number has 1.38021 as its logarithm? 

A number between 101 and 102, we think - because its logarithm is between 1 and 2. Ask 

€ 

log 100
0.01
 

 
 

 

 
 = log(10,000)

€ 

log 100
0.01
 

 
 

 

 
 = log(100) − log(0.01)



your calculator for 101.38021, and see if you don't get 24 = 8·3. When we add logs of two 
numbers, we get the log of their product.  
 

• And while we're at it, ask your calculator for the common logarithm of 2.4. You should 
get (within rounding!) 0.38021, the fractional part of log(24).  
 

• The common logarithms go well with decimal numbers. If we know that log 3.75 = 
0.57403 then we also know that  

 
o log 0.375 = log(3.75×10−1) = 0.57403−1  
o log 37.5 = log(3.75×101) = 1.57403  
o log 37,500 = log(3.75×104) = 4.57403.  

 
The fractional part of the logarithm, 0.57403, gives us the significant digits 3.75 and its 
integer part tells us the power of 10 that multiplies the 3.75.  
 

• If we divide 3 by 8, we get 0.375. So the logarithm of 3/8 should be about 0.47712 −
 0.90309 = −0.42597. Although a calculator doesn't do it, it's been customary to write this 
number as 0.57403−1, because 0.57403 is the log of 3.75.  
 

• There's no good way to find log(11) from log(8) and log(3). It's not their sum!  
 

• One-third of 0.90309 (log 8) is 0.30103. Ask your calculator for 100.30103. It should return 
2, which is the cube root of 8. When we divide a number's logarithm by 3, we have the 
logarithm of the number's cube root.  
 

2.1  A note about notation 
 
The logarithm function is sometimes but not always written with parentheses around its argument 
(the number the function acts on). It's always OK to enclose the argument to a log function in 
parentheses.  
 
One time you must use parentheses is if the argument to a logarithm function is a sum. If you 
want the logarithm of the number 2x+5, you must write “log(2x+5)”. If you omit the parentheses 
and write “log 2x+5” everyone who reads your work will think you meant ''(log 2x) + 5'' or '' 5 + 
log 2x.'' Unfortunately, this will include the person who reads your quiz papers!  
 
2.2  The calculus-based logarithmic function 
 
The logarithmic function that arises naturally out of calculus is called ''ln.'' Its name is 
pronounced ''natural log'' or sometimes just ''log'' or by sounding out its spelling: ''el-en.''  
 
Its inverse exponential function is ''exp'' and its value-variable is called either ''exp(x)'' or ''ex.'' 
You can pronounce it either as ''exp'' or ''e-to-the-x.'' The first notation, exp(x), reminds us that 



the number x is an argument to the function: the second notation, ex, reminds us of the rules of 
exponents that the function's values follow.  
 
The number e itself, which is exp(1) or e1, is an irrational number: 2.718 is only an 
approximation to its value. It is fine to use the name e instead of the approximate decimal value: 
e is, in fact, the correct name for this particular number.  
 
Leonhard Euler (pronounced ''oiler'') was the key figure in 18th century mathematics, and you 
will guess correctly that the numerical base of the natural logarithms is still called e in his honor.  
 
All the ''rules'' of logarithms are the same, whether we use 10 as a base (common logarithms) or 
e as a base (natural logarithms). The systems are even proportional!  
 
3.  Here are the Rules 
 

log(xy) = log(x) + log(y)          ln(xy) = ln(x) + ln(y) 

log(x/y) = log(x) − log(y)   ln(x/y) = ln(x) − ln(y) 
log(xy) = y·log(x)   ln(xy) = y·ln(x) 

10x·10y = 10x+y   ex·ey = ex+y 

10x/10y = 10x−y   ex/ey = ex−y 

(10x)y = 10xy   (ex)y = exy 
log(1) = log(100) = 0   ln(1) = ln(e0) = 0 
10logx = x = log(10x)   elnx = x = ln(ex)  

 
4.  Using the logarithm and exponential functions 
 
The key to using these functions is to remember how good they are at undoing each other:  

10logx = x = log(10x)  elnx = x = ln(ex) 

 
which is to say, applying first one and then the other (in either order) to a number returns the 
original number!  
 



 
Example 1: The equation  
 
 
gives y ''in terms of x'' - meaning that y is written as an expression whose only variable is x.  
 
Suppose we want to revise it, so that x is given in terms of y. (That is, we want to solve the 
equation for x.) We begin by solving it for ln(x):  
 
 
 
 
Now we apply the natural exponential function (we choose the natural exponential function 
instead of the tens-power one, because it's the companion function to the natural logarithm):  
 
 
 
We know that 
 
 
Therefore,  
 
 
 
Example 2: Using a log function is the way to get ''at'' a variable that's part of an exponent:  
 
Let's say we need to find the value of x when y = 450.  
 
We would first solve for the exponential expression:  
 
 
 
 
 

 
 
Now we would use a logarithm function to undo the effect of the tens-power exponential 
function. Either the common or the natural log function will work, but here it seems in the spirit 
of things to use the common logarithm:  
 
 
 
 
We know that 
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Thus,  
 
 
So, using the properties of logarithms, 
 
 
 
 
 
 
 
 
Example 3: Suppose that the quantity q(t) of some substance depends on the time, t, and that the 
dependence is observed to be  
 
 
 
with the time measured in hours. This is a very typical ''model'' of exponential growth, so it's 
good to be familiar with it.  
 

• At ''time zero'' (when the discussion begins) the quantity of the substance was q(0) = 
400·e0 = 400. We apparently started with 400 units of the substance.  
 

• Because the argument 0.15t to the exponential function is positive (usually in this model 
we think of time as going forward, so that t ≥ 0) the quantity q(t) will increase. The 
positive exponent-coefficient 0.15 tells us that this an exponential model describes 
growth.  

 
• An exponential growth model is often described by its time of doubling. How long will it 

take in this instance? We need to know the time t for which q(t) = 800:  
 

 
 
so that 

 
 

To solve e0.15t = 2, we would apply a log function. The natural log function seems  most 
appropriate:  

 
We look up the log's value: ln(2) ≅ 0.693. Then,  
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The substance will have doubled in approximately 4.62 hours (about 4 hours 37 minutes).  
 
Remember what we said earlier about approximations: although logarithms are real 
numbers we are using decimal numbers to approximate them. So we may be a minute or 
two off here. What's a minute among friends, after all? 
 
The doubling continues about every 4.62 hours. At the end of about 9.24 hours (about 9 
hours 22 minutes) we will have four times the quantity we began with.  
 

5.  Some Problems 
 
Working the problems is always the best way to learn mathematics!  
 

1. Below is an abbreviated table of common logarithm values. 
 

Common Log Approximate Value 

log(2) 0.30103 
log(3) 0.47712 
log(5) 0.69897 
log(7) 0.84510 
log(9) 0.95424 
log(11) 1.04139 

 
Use the table above to evaluate the following. Note that some answers will have a 
“log(x)” term in it. 

 
 
 
 
 
 
 

2. Use the properties of the logarithm function to break apart the expression into its simplest 
components. Hint: that includes factoring 504, which is divisible by 8. 
 
 
 
 

3. In our example of exponential growth, someone in some lab somewhere must have 
observed the substance carefully enough to come up with the model  
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q(t) = 400e0.15t. How do you suppose it was done?  
 

o It was easy to weigh the substance at the start of the experiment. That's where the 
400 came from.  

o The question remains: if we know q(t) = 400ekt, how did the experimenters decide 
that k was approximately 0.15?  

 
Apply the natural log function to q(t) = 400ekt. You will get a linear expression for 
ln[q(t)]. Explain how you could graph this linear expression to find k.  
 

4. A model for exponential decay (the opposite of exponential growth) might be  
 

 
 

where q(t) is measured in grams and t in hours. You can tell that this model describes 
decay rather than growth because of the negative coefficient −0.07 in the exponent. This 
is an example of a Radioactive Decay model.   
 

a. How much radioactive material was present at the start of the discussion?  
b. After 3 hours, how much material is still radioactive?  
c. What is the half-life of the substance?  

 
5. We have put $2,500 in a bank account that pays 5% interest at the end of each year.  

a. What will the account balance be at the end of the first year? What is the balance, 
as a percent of the original $2,500? (It will surely be over 100%.)  

b. The years go by, and we have almost forgotten the bank account, although it is 
still earning 5% interest at the end of each year. Suppose that at the beginning of 
the 10th year the balance in this account is N dollars. Write an expression for its 
value at the end of the 10th year.  

c. How much is in the account at the end of ten years?  
d. It occurs to us that the bank balance is growing exponentially. Can we rewrite 

2,500(1.05t) in the ''usual'' exponential form  
 
 
for some number k?  

e. How long does it take for the money in this account to triple?  
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6.  Some Answers 
 

1. We're using the values  
 

Common Log Approximate Value 

log(2) 0.30103 
log(3) 0.47712 
log(5) 0.69897 
log(7) 0.84510 
log(9) 0.95424 
log(11) 1.04139 

 
o Use both the rule for products and the rule for powers: 

 
 
 
 
 
 
 
 
 
 

o Use both the rule for quotients and the rule for products: 
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o Use the rule for products and the rule for log(10x): 
 
 
 
 
 
 
 
 
 
 

o Use the rule for quotients, the rule for products, and the rule for log(10x): 
 
 
 
 
 
 
 
 
 
 
 

 
o Use both the rule for products and the rule for powers: 

 
 
 
 
 
 
 
 
 
 

o Use both the rule for quotients and the rule for powers: 
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log(3500) = log(5 × 7 ×10 ×10)
log(3500) = log(5 × 7 ×102)
log(3500) = log(5) + log(7) + log(102)
log(3500) = log(5) + log(7) + 2
log(3500) ≈ (0.69897) + (0.84510) + 2
log(3500) ≈ 3.54407
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log(77x 2) ≈1.88649 + 2log(x)
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2. Use the various rules we have for logs of products, powers and quotients:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

3. The question is, how to find the constants A and k in a ''standard'' model of exponential 
growth, q(t) = Aekt.  
 

o As we noted in the problem, the value of A came from weighing the substance at 
the initial time (t = 0). That's because q(0) = Ae0t = Ae0 = A·1 = A.  
 

o Now we turn to figuring out the value of k. This is often done by plotting 
measured values of q(t) versus values of t on special graph paper so that the 
logarithm of the dependent variable is what gets plotted. The effect is to plot 
ln[q(t)] as the dependent variable, where t is the independent variable.  

 
o When we apply the natural log function to q(t) = 400ekt, we get  

 
 

 
 
 
 

o When we plot ln[q(t)] versus t, we get a straight 
line. Comparing the equation above to the slope-intercept form of a line (y = mx + 
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b), we see that its vertical intercept is ln(400), and its slope is the desired 
coefficient k.  

 
4. The question is, how to find the constants A and k in a ''standard'' model of exponential 

growth, q(t) = Aekt.  
 
o A typical model for exponential decay is 

 
 
 

where q(t) is measured in grams and t in hours. We see that this model describes 
decay rather than growth because of the negative coefficient (−0.07) in the 
exponent.  
 

a. We know that when t = 0, q(t) = q(0) = 650 e0 = 650. Thus, at the 
beginning of the discussion, 650 grams of the material present were 
radioactive. 
 

b. After 3 hours (when t = 3), q(t) = q(3) = 650 e(-0.07)(3) = 650 e-0.21. 
 
To approximate q(3) we need a calculator or a table of exponential values. 
Usually we do this by using a calculator: we find that e−0.21 ≅ 0.811. Notice 
that this value is less than 1! This is because the exponent's value is 
negative.  
 
So, we find q(3) ≅ (650)(0.811) ≅ 526.5 grams. 
 

c. The substance's half-life is the time it takes for its radioactive portion to 
decrease by half. That would mean that the factor e−0.07t must be 0.5. Thus, 
 
 
 

 
 
 
 
 
 
 
The half-life of this substance is approximately 9.9 hours, which would be 
about 9 hours and 54 minutes.  
 

5. We have put $2500 in a bank account that pays 5 percent interest at the end of each year.  
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a. If we put $2500 in the bank at 5% interest, at the end of one year we will 
have our original $2500 plus (0.05)(2500) = $125 in interest, or $2625. As 
a percentage, we will have 105% of our original amount:  
 

 
b. As long as the bank is still paying 5% interest, the balance at the end of 

any year will be 105% of the balance at the beginning of the year. Leaving 
N dollars in the account for 1 year means that the balance will be N(1.05).  
Now after each year, the balance will be multiplied by 1.05. Thus, after 10 
years, the balance will be N(1.05)10. 
 

c. After 10 years, $2500 at 5% interest will become 
 
 

d. To rewrite 2500(1.05t) in the ''usual'' exponential form  
 
 
 
we would need to rewrite 1.05 as a power of e:  
 
 
 
 
 
 
 
 
 
 
Or, we might simply have remembered that 1.05 = eln(1.05). That's what 
inverse functions do, after all: each undoes the effect of the other!  
 
Thus,  
 
 

e. Money in this account will triple when  
 
 
 
 
 
 
 
 
So it will take 22 years, 6 months, and a few days for the money to triple. 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