A partial list of publications that emanated from the dissertations of our alumni.
Alum |
Journal Publications |
---|---|
Aghor, Pratik Class of '23 |
Aghor, Pratik, Atif, Mohammad, “Effect of outer cylinder rotation on the radially heated Taylor-Couette Flow”, Journal Physics of Fluid, 35, 094108 (2023). |
Brand, Evan Class of '17 |
Gibson, J. F., & Brand, E. (2014). Spanwise-localized solutions of planar shear flows. Journal of fluid mechanics, 745, 25-61. Brand, E., & Gibson, J. F. (2014). A doubly localized equilibrium solution of plane Couette flow. Journal of Fluid Mechanics, 750, R3. |
Edwards, Madeline Class of '21 |
Marianna A. Shubov and Madeline M. Edwards, "Stability of Fluid Flow through a Channel with Flexible Walls", International Journal of Mathematics and Mathematical Sciences, (2021); Marianna A. Shubov and Madeline M. Edwards, “Analytical study of a model of fluid flow through a channel with flexible walls”, Math Meth in the Appl Sci. (2023); |
Laszlo, Kindrat Class of 2019 |
Marianna A. Shubov, Laszlo P. Kindrat. Spectral analysis of the Euler-Bernoulli beam model with fully nonconservative feedback matrix. Mathematical Methods in the Applied Sciences, Volume 41, Issue 12, pp 4691-4713 (2018). Marianna A. Shubov, Laszlo P. Kindrat. Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix. IMA Journal of Applied Mathematics, Volume 84, Issue 5, pp 873-911 (2019). Marianna A. Shubov, Laszlo P. Kindrat. Spectral Analysis and Numerical Investigation of a Flexible Structure with Nonconservative Boundary Data. Edited Volume of Functional Calculus (2019). Marianna A. Shubov, Laszlo P. Kindrat. Asymptotic distribution of the eigenvalues of the bending-torsion vibration model with fully nondissipative boundary feedback. Studies in Applied Mathematics, Volume 150, Issue 4, pp 996-1025 (2023). |
Montemuro, Brandon Class of '20 |
Montemuro B., White C, Klewicki J., & Chini, G. A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows, Journal of Fluid Mechanics, 901, A28, 2020 Chini G, Montemuro B., White C, Klewicki J. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows, Philosophical Transactions of the Royal Society A , 375, 20160090, 2017 |
Parker, John Class of '21 |
John E. Parker and Kevin M. Short, "Mutual Stabilization in Chaotic Hindmarsh-Rose Neurons", Dynamics 3(2), 282-298. John E. Parker and Kevin M. Short, "Cupolets in a chaotic neuron model", Chaos 32, 113104 (2022) John E. Parker and Kevin M. Short, "Sigmoidal synaptic learning produces mutual stabilization in chaotic FitzHugh–Nagumo model", Chaos 30, 063108 (2020) |
Storch, Laura Class of '17 |
Laura S. Storch, James M. Pringle, Karen E. Alexander, David O. James. Revisiting the logistic map: A closer look at the dynamics of a classic chaotic population model with ecologically realistic spatial structure and dispersal. Elsevier, Theoretical Population Biology, Volume 114, pp 10-18 (2017). Laura S. Storch, James M. Pringle. A downstream drift into chaos: Asymmetric dispersal in a classic density dependent population model. Elsevier, Theoretical Population Biology, Volume 123, pp 9-17 (2018). Laura S. Storch, James M. Pringle. Where and how do localized perturbations affect stream and costal ocean populations with nonlinear growth dynamics. Springer Link, Theoretical Ecology, Volume 13, pp 223-238 (2020). |
Wen, Baole Class of '15 |
B. Wen, Z. Ding, G. P. Chini, R. R. Kerswell. 2022 Heat transport in Rayleigh-Bénard convection with linear marginality, Phil. Trans. R. Soc. A 380, 20210039. B. Wen, G. P. Chini. 2019 On moderate-Rayleigh-number convection in an inclined porous layer. Fluids 4, 101. B. Wen, G. P. Chini. 2018 Reduced modeling of porous media convection in a minimal flow unit at large Rayleigh number. J. Comput Phys. 371, 551–563. B. Wen, G. P. Chini. 2018 Inclined porous medium convection at large Rayleigh number. J. Fluid Mech. 837, 670–702. B. Wen, G. P. Chini, R. R. Kerswell, C. R. Doering. 2015 Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection. Phys. Rev. E 92, 043012. B. Wen, L. T. Corson, G. P. Chini. 2015 Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech. 772, 197–224. B. Wen, G. P. Chini, N. Dianati, C. R. Doering. 2013 Computational approaches to aspect-ratio-dependent upper bounds and heat flux in porous medium convection. Phys. Lett. A 377, 2931–2938. B. Wen, N. Dianati, E. Lunasin, G. P. Chini, C. R. Doering. 2012 New upper bounds and reduced dynamical modeling for Rayleigh-Bénard convection in a fluid saturated porous layer. Commun. Nonlinear Sci. Numer. Simul. 17, 2191–2199. |