Russell Carr

Professor and Chair of Chemical Engineering, Chemical Engineering

PROFESSOR
Phone: (603) 862-1429
Office: Chemical Engineering, Kingsbury Hall Rm W301A, Durham, NH 03824
Russell Carr

My research focuses on blood rheology in microvessel networks. I am interested in Fahreus effect (reduction in blood cell concentration in small bore vessels), the Fahreus-Lindqvist effect (reduction in apparent viscosity in small bore vessels) and plasma skimming (the separation of cellular and plasma phases that occurs at the junction of small bore vessels. Currently I am working on a model of blood flow through networks which incorporate each of these rheological effects. Computational results present interesting nonlinear dynamics including fixed point attractors, limit cycles, and changes in the character and geometry of the attractor akin to period doubling. Experimental measurements are planned to verify these computational results.

Education

  • Ph.D., Chemical Engineering, University of Rochester
  • M.S., Chemical Engineering, University of Rochester
  • B.S., Chemical Engineering, Brigham Young University

Courses Taught

  • BENG 763: Bioengineering Design I
  • BENG 764: Bioengineering Design
  • CHE 400: Chemical Engineering Lectures
  • CHE 501: Intro Chemical Engineering I
  • CHE 502: Intro Chemical Engineering II
  • CHE 602: Heat Transfer&Unit Operations
  • CHE 603: Appld Math for Chemical Engnrs
  • CHE 695: Chemical Engineering Project
  • CHE 696: Independent Study
  • CHE 709: Air Pollution
  • CHE 752: Process Dynamics and Control
  • CHE 999: Doctoral Research
  • INCO 590: Rsrch Exp/Chemical Engr
  • INCO 790: Adv Rsrch Exp/Chemistry Engr

Selected Publications

Karst, N. J., Geddes, J. B., & Carr, R. T. (2017). Model Microvascular Networks Can Have Many Equilibria. Bulletin of Mathematical Biology, 79(3), 662-681. doi:10.1007/s11538-017-0251-z

King, M. R., Phillips, K. G., Mitrugno, A., Lee, T. -R., de Guillebon, A. M. E., Chandrasekaran, S., . . . McCarty, O. J. T. (2015). A physical sciences network characterization of circulating tumor cell aggregate transport. American Journal of Physiology-Cell Physiology, 308(10), C792-C802. doi:10.1152/ajpcell.00346.2014

Geddes, J. B., Carr, R. T., Wu, F., Lao, Y., & Maher, M. (2010). Blood flow in microvascular networks: A study in nonlinear biology. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 045123. doi:10.1063/1.3530122

Gardner, D., Li, Y., Small, B., Geddes, J. B., & Carr, R. T. (2010). Multiple equilibrium states in a micro-vascular network. Mathematical Biosciences, 227(2), 117-124. doi:10.1016/j.mbs.2010.07.001

Geddes, J. B., Carr, R. T., Karst, N. J., & Wu, F. (2007). The Onset of Oscillations in Microvascular Blood Flow. SIAM Journal on Applied Dynamical Systems, 6(4), 694-727. doi:10.1137/060670699

Carr, R. T., Geddes, J. B., & Wu, F. (2005). Oscillations in a Simple Microvascular Network. Annals of Biomedical Engineering, 33(6), 764-771. doi:10.1007/s10439-005-2345-2

Carr, R. T., & Lacoin, M. (2000). Nonlinear Dynamics of Microvascular Blood Flow. Annals of Biomedical Engineering, 28(6), 641-652. doi:10.1114/1.1306346

Carr, R. T., & Wickham, L. L. (1990). Plasma skimming in serial microvascular bifurcations. Microvascular Research, 40(2), 179-190. doi:10.1016/0026-2862(90)90017-l

Rong, F. W., & Carr, R. T. (1990). Dye studies on flow through branching tubes. Microvascular Research, 39(2), 186-202. doi:10.1016/0026-2862(90)90069-4

Fenton, B. M., Carr, R. T., & Cokelet, G. R. (1985). Nonuniform red cell distribution in 20 to 100 μm bifurcations. Microvascular Research, 29(1), 103-126. doi:10.1016/0026-2862(85)90010-x

Most Cited Publications