Junhao Shen

Junhao Shen

Department Chair and Professor, Mathematics and Statistics
PROFESSOR
Phone: (603) 862-2126
Office: Mathematics & Statistics, Kingsbury Hall Rm W338 B, Durham, NH 03824

Courses Taught

  • MATH 426: Calculus II
  • MATH 531: Mathematical Proof
  • MATH 545: Intro to Linear Algebra
  • MATH 767: One-Dimensional Real Analysis
  • MATH 767/867: One-Dimensional Real Analysis
  • MATH 768/868: Real Analysis II
  • MATH 867: One-Dimensional Real Analysis
  • MATH 913: Graph Theory & Discrete Math
  • MATH 918: Analysis of Real Numbers
  • MATH 929: Directed Reading
  • MATH 953: Analysis I
  • MATH 954: Analysis II

Education

  • Ph.D., Mathematics, University of Pennsylvania
  • M.S., Mathematics, Nanjing University
  • B.S., Mathematics, Nanjing University

Selected Publications

  • HADWIN, D., LI, W., LIU, W., & SHEN, J. (2019). A CHARACTERISATION OF TRACIALLY NUCLEAR C*-ALGEBRAS. Bulletin of the Australian Mathematical Society, 100(1), 119-128. doi:10.1017/s0004972718001387

  • Li, Q., Shen, J., Shi, R., & Wang, L. (2017). Perturbations of self-adjoint operators in semifinite von Neumann
    algebras: Kato-Rosenblum theorem. Retrieved from http://arxiv.org/abs/1706.09566v1

  • Li, Q., Shen, J., & Shi, R. (2017). A generalization of the Voiculescu theorem for normal operators in
    semifinite von Neumann algebras. Retrieved from http://arxiv.org/abs/1706.09522v1

  • Shen, J., & Zhu, S. (2017). COMPLEX SYMMETRIC GENERATORS FOR OPERATOR ALGEBRAS. JOURNAL OF OPERATOR THEORY, 77(2), 421-454. doi:10.7900/jot.2016apr25.2116

  • Hadwin, D., Shen, J., Wu, W., & Yuan, W. (2016). RELATIVE COMMUTANT OF AN UNBOUNDED OPERATOR AFFILIATED WITH A FINITE VON NEUMANN ALGEBRA. JOURNAL OF OPERATOR THEORY, 75(1), 209-223. doi:10.7900/jot.2015jan23.2065

  • Hadwin, D., Li, Q., & Shen, J. (2011). Topological Free Entropy Dimensions in Nuclear C*-algebras and in Full Free Products of Unital C*-algebras. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 63(3), 551-590. doi:10.4153/CJM-2011-014-8

  • Fang, J., Hadwin, D., Nordgren, E., & Shen, J. (2008). Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property. JOURNAL OF FUNCTIONAL ANALYSIS, 255(1), 142-183. doi:10.1016/j.jfa.2008.04.008

  • Hadwin, D., & Shen, J. (2007). Free orbit dimension of finite von Neumann algebras. JOURNAL OF FUNCTIONAL ANALYSIS, 249(1), 75-91. doi:10.1016/j.jfa.2007.04.008

  • Shen, J. (2006). Maximal injective subalgebras of tensor products of free group factors. JOURNAL OF FUNCTIONAL ANALYSIS, 240(2), 334-348. doi:10.1016/j.jfa.2006.03.017

  • Ge, L., & Shen, J. (2002). On free entropy dimension of finite von Neumann algebras. Geometric and Functional Analysis, 12(3), 546-566. doi:10.1007/s00039-002-8256-6

  • Most Cited Publications