Courses Taught
- MATH 426: Calculus II
- MATH 531: Mathematical Proof
- MATH 545: Intro to Linear Algebra
- MATH 767: One-Dimensional Real Analysis
- MATH 767/867: One-Dimensional Real Analysis
- MATH 768/868: Real Analysis II
- MATH 867: One-Dimensional Real Analysis
- MATH 913: Graph Theory & Discrete Math
- MATH 918: Analysis of Real Numbers
- MATH 929: Directed Reading
- MATH 953: Analysis I
- MATH 954: Analysis II
Selected Publications
HADWIN, D., LI, W., LIU, W., & SHEN, J. (2019). A CHARACTERISATION OF TRACIALLY NUCLEAR C*-ALGEBRAS. Bulletin of the Australian Mathematical Society, 100(1), 119-128. doi:10.1017/s0004972718001387
Li, Q., Shen, J., Shi, R., & Wang, L. (2017). Perturbations of self-adjoint operators in semifinite von Neumann
algebras: Kato-Rosenblum theorem. Retrieved from http://arxiv.org/abs/1706.09566v1Li, Q., Shen, J., & Shi, R. (2017). A generalization of the Voiculescu theorem for normal operators in
semifinite von Neumann algebras. Retrieved from http://arxiv.org/abs/1706.09522v1Shen, J., & Zhu, S. (2017). COMPLEX SYMMETRIC GENERATORS FOR OPERATOR ALGEBRAS. JOURNAL OF OPERATOR THEORY, 77(2), 421-454. doi:10.7900/jot.2016apr25.2116
Hadwin, D., Shen, J., Wu, W., & Yuan, W. (2016). RELATIVE COMMUTANT OF AN UNBOUNDED OPERATOR AFFILIATED WITH A FINITE VON NEUMANN ALGEBRA. JOURNAL OF OPERATOR THEORY, 75(1), 209-223. doi:10.7900/jot.2015jan23.2065
Hadwin, D., Li, Q., & Shen, J. (2011). Topological Free Entropy Dimensions in Nuclear C*-algebras and in Full Free Products of Unital C*-algebras. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 63(3), 551-590. doi:10.4153/CJM-2011-014-8
Fang, J., Hadwin, D., Nordgren, E., & Shen, J. (2008). Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property. JOURNAL OF FUNCTIONAL ANALYSIS, 255(1), 142-183. doi:10.1016/j.jfa.2008.04.008
Hadwin, D., & Shen, J. (2007). Free orbit dimension of finite von Neumann algebras. JOURNAL OF FUNCTIONAL ANALYSIS, 249(1), 75-91. doi:10.1016/j.jfa.2007.04.008
Shen, J. (2006). Maximal injective subalgebras of tensor products of free group factors. JOURNAL OF FUNCTIONAL ANALYSIS, 240(2), 334-348. doi:10.1016/j.jfa.2006.03.017
Ge, L., & Shen, J. (2002). On free entropy dimension of finite von Neumann algebras. Geometric and Functional Analysis, 12(3), 546-566. doi:10.1007/s00039-002-8256-6