Benjamin Chandran

PROFESSOR
Phone: (603) 862-2255
Office: Physics, Morse Hall Rm 242, Durham, NH 03824
Benjamin D. G. Chandran

Professor Chandran received his Ph.D. from Princeton University in 1997. His research is in the areas of theoretical plasma physics and theoretical astrophysics, particularly problems at the interface between these two fields. His main interests are plasma turbulence, the role of turbulence in the solar corona and other astrophysical settings, and the evolution of baryonic matter in clusters of galaxies. He has also worked on cosmic-ray propagation, particle acceleration at shocks, and the origin of astrophysical magnetic fields. His research program is supported by grants from NASA, NSF, and DOE, and offers research opportunities for undergraduates, graduate students, and postdoctoral scholars.

Education

  • Ph.D., Astrophysical Sciences, Princeton University
  • M.A., Astrophysical Sciences, Princeton University
  • B.A., Physics, Yale University
  • B.A., History, Yale University

Courses Taught

  • PHYS 407: General Physics I Recitation
  • PHYS 408: General Physics II
  • PHYS 505: General Physics III
  • PHYS 615: Mechanics/Mathematical Phys I
  • PHYS 701: Quantum Mechanics I
  • PHYS 702: Quantum Mechanics II
  • PHYS 710: Modern Astrophysics
  • PHYS 999: Doctoral Research

Selected Publications

Hoppock, I. W., Chandran, B. D. G., Klein, K. G., Mallet, A., & Verscharen, D. (2018). Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- plasmas. Journal of Plasma Physics, 84(6). doi:10.1017/s0022377818001277

Verscharen, D., Klein, K. G., Chandran, B. D. G., Stevens, M. L., Salem, C. S., & Bale, S. D. (2018). ALPS: the Arbitrary Linear Plasma Solver. Journal of Plasma Physics, 84(4). doi:10.1017/s0022377818000739

Chandran, B. D. G. (2018). Parametric instability, inverse cascade and the  range of solar-wind turbulence. Journal of Plasma Physics, 84(1). doi:10.1017/s0022377818000016

Mallet, A., Schekochihin, A. A., & Chandran, B. D. G. (2017). Disruption of Alfvénic turbulence by magnetic reconnection in a collisionless plasma. Journal of Plasma Physics, 83(6). doi:10.1017/s0022377817000812

Mallet, A., Schekochihin, A. A., & Chandran, B. D. G. (2017). Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection. Monthly Notices of the Royal Astronomical Society, 468(4), 4862-4871. doi:10.1093/mnras/stx670

Chandran, B. D. G., Dennis, T. J., Quataert, E., & Bale, S. D. (2011). INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE. The Astrophysical Journal, 743(2), 197. doi:10.1088/0004-637x/743/2/197

Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E., & Germaschewski, K. (2010). PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE IN THE SOLAR WIND. The Astrophysical Journal, 720(1), 503-515. doi:10.1088/0004-637x/720/1/503

Chandran, B. D. G., & Cowley, S. C. (n.d.). Thermal Conduction in a Tangled Magnetic Field. Physical Review Letters, 80(14), 3077-3080. doi:10.1103/physrevlett.80.3077

Chandran, B. D. G. (n.d.). Scattering of Energetic Particles by Anisotropic Magnetohydrodynamic Turbulence with a Goldreich-Sridhar Power Spectrum. Physical Review Letters, 85(22), 4656-4659. doi:10.1103/physrevlett.85.4656

Chandran, B. D. G. (n.d.). Weak Compressible Magnetohydrodynamic Turbulence in the Solar Corona. Physical Review Letters, 95(26). doi:10.1103/physrevlett.95.265004

Most Cited Publications