harish_vashisth

Harish Vashisth

PROFESSOR
of Chemical Engineering & Bioengineering
Phone: (603) 862-2483
Office: Chemical Engineering, Kingsbury Hall Rm S344B, Durham, NH 03824

Research Interests
Computational Biophysics, Biomolecular Modeling and Simulations, Chemical Physics, Soft Matter and Self-assembly, Dynamics in biomolecular systems

Courses Taught

  • CHBE 603: Applied Math for Chem Engineer
  • CHBE 695: Chemical Engineering Project
  • CHBE 755/855: Computational Molecular Bioeng
  • CHBE 923: Adv Chem Engg Thermodynamics
  • CHBE 999: Doctoral Research
  • CHE 603: Appld Math for Chemical Engnrs
  • CHE 900: Seminar
  • CHE 923: Adv Chem Eng Thermodynamics
  • CHE 999: Doctoral Research
  • INCO 790: Advanced Research Experience

Education

  • Ph.D., Chemical Engineering, Drexel University
  • B.Tech., Chemical Engineering, National Instit of Tech

Research Interests

  • 3D Modeling / Visualization
  • Bioengineering
  • Biological Modeling
  • Biological Polymers
  • Biomedical Engineering
  • Biomimetics
  • Biomolecular Science
  • Biopharmaceuticals
  • Biophysical Interactions
  • Biophysics
  • Chemical Engineering
  • Chemical Physics
  • Computer Modeling
  • Computer Simulation/Modeling

Selected Publications

  • Levintov, L., Gorai, B., & Vashisth, H. (2024). Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases.. Biochemistry, 63(20), 2692-2703. doi:10.1021/acs.biochem.4c00271

  • Kalapurakal, R. A. M., Jha, P. K., & Vashisth, H. (2024). Theory and simulations of light-induced self-assembly in colloids with quantum chemistry derived empirical potentials.. Soft Matter, 20(37), 7367-7378. doi:10.1039/d4sm00459k

  • Levintov, L., Gorai, B., & Vashisth, H. (2024). Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases.. bioRxiv. doi:10.1101/2024.05.09.593448

  • Verma, J., & Vashisth, H. (2024). Molecular basis for differential recognition of an allosteric inhibitor by receptor tyrosine kinases.. Proteins, 92(8), 905-922. doi:10.1002/prot.26685

  • Stuut Balsam, S., Zhong, F., Pence, N., Levintov, L., Andhare, D., Hammond, J. H., . . . Pletneva, E. V. (2024). Conserved C-Terminal Tail Is Responsible for Membrane Localization and Function of Pseudomonas aeruginosa Hemerythrin.. Biochemistry, 63(14), 1795-1807. doi:10.1021/acs.biochem.4c00174

  • Shen, Y. -X., Song, W. C., Barden, D. R., Ren, T., Lang, C., Feroz, H., . . . Kumar, M. (2018). Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. NATURE COMMUNICATIONS, 9. doi:10.1038/s41467-018-04604-y

  • Vashisth, H., Skiniotis, G., & III, B. C. L. (2012). Using Enhanced Sampling and Structural Restraints to Refine Atomic Structures into Low-Resolution Electron Microscopy Maps. STRUCTURE, 20(9), 1453-1462. doi:10.1016/j.str.2012.08.007

  • Vashisth, H., Maragliano, L., & Abrams, C. F. (2012). "DFG-Flip" in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop. BIOPHYSICAL JOURNAL, 102(8), 1979-1987. doi:10.1016/j.bpj.2012.03.031

  • Strunk, B. S., Loucks, C. R., Su, M., Vashisth, H., Cheng, S., Schilling, J., . . . Skiniotis, G. (2011). Ribosome Assembly Factors Prevent Premature Translation Initiation by 40S Assembly Intermediates. SCIENCE, 333(6048), 1449-1453. doi:10.1126/science.1208245

  • Vashisth, H., & Abrams, C. F. (2008). Ligand Escape Pathways and (Un)Binding Free Energy Calculations for the Hexameric Insulin-Phenol Complex. BIOPHYSICAL JOURNAL, 95(9), 4193-4204. doi:10.1529/biophysj.108.139675

  • Most Cited Publications