Harish Vashisth
Research Interests
Computational Biophysics, Biomolecular Modeling and Simulations, Chemical Physics, Soft Matter and Self-assembly, Dynamics in biomolecular systems
Courses Taught
- CHBE 603: Applied Math for Chem Engineer
- CHBE 695: Chemical Engineering Project
- CHBE 755/855: Computational Molecular Bioeng
- CHBE 923: Adv Chem Engg Thermodynamics
- CHBE 999: Doctoral Research
- CHE 603: Appld Math for Chemical Engnrs
- CHE 604: Chem Engnrng Thermodynamics
- CHE 900: Seminar
- CHE 923: Adv Chem Eng Thermodynamics
- CHE 999: Doctoral Research
- INCO 590: Rsrch Exp/Chemical Engr
- INCO 790: Advanced Research Experience
Research Interests
- 3D Modeling / Visualization
- Bioengineering
- Biological Modeling
- Biological Polymers
- Biomedical Engineering
- Biomimetics
- Biomolecular Science
- Biopharmaceuticals
- Biophysical Interactions
- Biophysics
- Chemical Engineering
- Chemical Physics
- Computer Modeling
- Computer Simulation/Modeling
Selected Publications
Levintov, L., Gorai, B., & Vashisth, H. (2024). Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases.. Biochemistry, 63(20), 2692-2703. doi:10.1021/acs.biochem.4c00271
Kalapurakal, R. A. M., Jha, P. K., & Vashisth, H. (2024). Theory and simulations of light-induced self-assembly in colloids with quantum chemistry derived empirical potentials.. Soft Matter, 20(37), 7367-7378. doi:10.1039/d4sm00459k
Levintov, L., Gorai, B., & Vashisth, H. (2024). Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases.. bioRxiv. doi:10.1101/2024.05.09.593448
Verma, J., & Vashisth, H. (2024). Molecular basis for differential recognition of an allosteric inhibitor by receptor tyrosine kinases.. Proteins, 92(8), 905-922. doi:10.1002/prot.26685
Stuut Balsam, S., Zhong, F., Pence, N., Levintov, L., Andhare, D., Hammond, J. H., . . . Pletneva, E. V. (2024). Conserved C-Terminal Tail Is Responsible for Membrane Localization and Function of Pseudomonas aeruginosa Hemerythrin.. Biochemistry, 63(14), 1795-1807. doi:10.1021/acs.biochem.4c00174
Shen, Y. -X., Song, W. C., Barden, D. R., Ren, T., Lang, C., Feroz, H., . . . Kumar, M. (2018). Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. NATURE COMMUNICATIONS, 9. doi:10.1038/s41467-018-04604-y
Vashisth, H., Skiniotis, G., & III, B. C. L. (2012). Using Enhanced Sampling and Structural Restraints to Refine Atomic Structures into Low-Resolution Electron Microscopy Maps. STRUCTURE, 20(9), 1453-1462. doi:10.1016/j.str.2012.08.007
Vashisth, H., Maragliano, L., & Abrams, C. F. (2012). "DFG-Flip" in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop. BIOPHYSICAL JOURNAL, 102(8), 1979-1987. doi:10.1016/j.bpj.2012.03.031
Strunk, B. S., Loucks, C. R., Su, M., Vashisth, H., Cheng, S., Schilling, J., . . . Skiniotis, G. (2011). Ribosome Assembly Factors Prevent Premature Translation Initiation by 40S Assembly Intermediates. SCIENCE, 333(6048), 1449-1453. doi:10.1126/science.1208245
Vashisth, H., & Abrams, C. F. (2008). Ligand Escape Pathways and (Un)Binding Free Energy Calculations for the Hexameric Insulin-Phenol Complex. BIOPHYSICAL JOURNAL, 95(9), 4193-4204. doi:10.1529/biophysj.108.139675