Marek Petrik

Personal page: http://cs.unh.edu/~mpetrik
Research Interests
- Artificial Intelligence/Cybernetics
- Optimization
Courses Taught
- CS 696: Independent Study
- CS 696W: Independent Study\Honors
- CS 750/850: Machine Learning
- CS 780/880: Top/Machine Learning
- CS 950: Advanced Machine Learning
- CS 980: Topics/Machine Learning
- CS 999: Doctoral Research
- CS/MATH 757/857/757/857: Mathematical Optimization
- INCO 590: Rsrch Exp/Computer Science
- MATH 757: Mathematical Optimization
- MATH 857: Mathematical Optimization
Selected Publications
Iancu, D. A., Petrik, M., & Subramanian, D. (2015). Tight Approximations of Dynamic Risk Measures. Mathematics of Operations Research, 40(3), 655-682. doi:10.1287/moor.2014.0689
Buckley, S., Ettl, M., Jain, P., Luss, R., Petrik, M., Ravi, R. K., & Venkatramani, C. (2014). Social media and customer behavior analytics for personalized customer engagements. IBM Journal of Research and Development, 58(5/6), 7:1-7:12. doi:10.1147/jrd.2014.2344515
Dhurandhar, A., & Petrik, M. (2014). Efficient and accurate methods for updating generalized linear models with multiple feature additions. Journal of Machine Learning Research, 15, 2607-2627. Retrieved from http://dl.acm.org/citation.cfm?id=2670332
Petrik, M., & Zilberstein, S. (2011). Robust approximate bilinear programming for value function approximation. Journal of Machine Learning Research, 12, 3027-3063. Retrieved from http://dl.acm.org/citation.cfm?id=2078202
Johns, J., Petrik, M., & Mahadevan, S. (2009). Hybrid least-squares algorithms for approximate policy evaluation. Machine Learning, 76(2-3), 243-256. doi:10.1007/s10994-009-5128-4
Petrik, M., & Zilberstein, S. (2009). A bilinear programming approach for multiagent planning. Journal of Artificial Intelligence Research, 35, 235-274.
Petrik, M., & Zilberstein, S. (2007). Learning parallel portfolios of algorithms. Annals of Mathematics and Artificial Intelligence, 48(1-2), 85-106. doi:10.1007/s10472-007-9050-9
Petrik, M. (2005). Learning parallel portfolios of algorithms. Unknown Journal, 1-10.
Liu, B., Gemp, I., Ghavamzadeh, M., Liu, J., Mahadevan, S., & Petrik, M. (n.d.). Proximal Gradient Temporal Difference Learning: Stable Reinforcement Learning with Polynomial Sample Complexity. Journal of Artificial Intelligence Research, 63, 461-494. doi:10.1613/jair.1.11251
Most Cited Publications