Marianna Shubov
Courses Taught
- IAM 932: Graduate Partial Diff Eqns
- IAM 999: Doctoral Research
- MATH 647: Complex Analysis for Applictns
- MATH 696W: Independent Study
- MATH 745/845: Foundations of Applied Math
- MATH 797: Senior Seminar
Research Interests
- Aerodynamics
- Aeroelasticity
- Aeronautical/Astronautical Engineering
- Aerospace Engineering
- Analysis & Functional Analysis
- Analytical Science
- Applied Mathematics
- Applied Sciences
- Bioengineering
- Continuum Mechanics
- Distributed Systems
- Dynamic Stability
- Fluid Mechanics
- Mathematical Modeling (Medical)
- Mathematical Physics
- Nano-Materials
- Oscillations
- Vibration
- Wave Equations
Selected Publications
Shubov, M. A., & Kindrat, L. P. (2023). Asymptotic distribution of the eigenvalues of the bending‐torsion vibration model with fully nondissipative boundary feedback. Studies in Applied Mathematics, 150(4), 996-1025. doi:10.1111/sapm.12562
Shubov, M. A., & Edwards, M. M. (2023). Analytical study of a model of fluid flow through a channel with flexible walls. Mathematical Methods in the Applied Sciences, 46(6), 6875-6909. doi:10.1002/mma.8946
Shubov, M. A., & Edwards, M. M. (2021). Stability of Fluid Flow through a Channel with Flexible Walls. International Journal of Mathematics and Mathematical Sciences, 2021, 1-12. doi:10.1155/2021/8825677
Shubov, M. A. (2019). Location of eigenmodes of Euler-Bernoulli beam model under fully non-dissipative boundary conditions. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 475(2231). doi:10.1098/rspa.2019.0544
Shubov, M. A. (2018). Asymptotic and Spectral Analysis of a Model of the Piezoelectric Energy Harvester with the Timoshenko Beam as a Substructure. APPLIED SCIENCES-BASEL, 8(9). doi:10.3390/app8091434
Shubov, M. A. (2002). Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model. MATHEMATISCHE NACHRICHTEN, 241. doi:10.1002/1522-2616(200207)241:13.0.CO;2-3
Shubov, M. A. (2000). Riesz basis property of root vectors of non-self-adjoint operators generated by aircraft wing model in subsonic airflow. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 23(18), 1585-1615. doi:10.1002/1099-1476(200012)23:183.0.CO;2-E
Shubov, M. A., Martin, C. F., Dauer, J. P., & Belinskiy, B. P. (1997). Exact controllability of the damped wave equation. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 35(5), 1773-1789. doi:10.1137/S0363012996291616
Shubov, M. A. (1997). Spectral operators generated by damped hyperbolic equations. INTEGRAL EQUATIONS AND OPERATOR THEORY, 28(3), 358-372. doi:10.1007/BF01294159
Shubov, M. A. (1996). Basis property of eigenfunctions of nonselfadjoint operator pencils generated by the equation of nonhomogeneous damped string. INTEGRAL EQUATIONS AND OPERATOR THEORY, 25(3), 289-328. doi:10.1007/BF01262296