Marianna Shubov

Phone: (603) 862-2731
Office: Mathematics & Statistics, Kingsbury Hall Rm W345, Durham, NH 03824
Marianna A. Shubov


  • Ph.D., Theoretical&Math.L Physics, Saint Petersburg State University
  • M.S., Theoretical&Math.L Physics, Saint Petersburg State University

Research Interests

  • Aerodynamics
  • Aeroelasticity
  • Aeronautical/Astronautical Engineering
  • Aerospace Engineering
  • Analysis & Functional Analysis
  • Analytical Science
  • Applied Mathematics
  • Applied Sciences
  • Bioengineering
  • Continuum Mechanics
  • Distributed Systems
  • Dynamic Stability
  • Fluid Mechanics
  • Mathematical Modeling (Medical)
  • Mathematical Physics
  • Nano-Materials
  • Oscillations
  • Vibration
  • Wave Equations

Courses Taught

  • IAM 932: Graduate Partial Diff Eqns
  • MATH 647: Complex Analysis for Applictns
  • MATH 696W: Independent Study
  • MATH 745/845: Foundations of Applied Math
  • MATH 746/846: Foundations of Applied Math
  • MATH 788/888: Complex Analysis
  • MATH 797: Senior Seminar
  • ME 797: Honors Seminar

Selected Publications

Shubov, M. A. (2019). Location of eigenmodes of Euler–Bernoulli beam model under fully non-dissipative boundary conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2231), 20190544. doi:10.1098/rspa.2019.0544

Shubov, M. (2018). Asymptotic and spectral analysis of a model of the piezoelectric energy harvester with the Timoshenko beam as a substructure. APPLIED SCIENCES, 2018, 8, 1434; doi:10.3390., 18(8), 1434.

Shubov, M. A., & Kindrat, L. P. (2018). Spectral analysis of the Euler-Bernoulli beam model with fully nonconservative feedback matrix. Mathematical Methods in the Applied Sciences, 41(12), 4691-4713. doi:10.1002/mma.4922

Shubov, M. A. (2017). Spectral analysis of a non-selfadjoint operator generated by an energy harvesting model and application to an exact controllability problem. Asymptotic Analysis, 102(3-4), 119-156. doi:10.3233/asy-171413

Shubov, M. A., & Shubov, M. V. (2017). Aerodynamic performance of ultra long range projectiles. MATHEMATICS IN ENGINEERING, SCIENCE, AND AEROSPACE, 8(1), 3-27.

Shubov, M. A. (2002). Asymptotic and Spectral Analysis of the Spatially Nonhomogeneous Timoshenko Beam Model. Mathematische Nachrichten, 241(1), 125-162. doi:10.1002/1522-2616(200207)241:1<125::aid-mana125>;2-3

Shubov, M. A. (2000). Riesz basis property of root vectors of non-self-adjoint operators generated by aircraft wing model in subsonic airflow. Mathematical Methods in the Applied Sciences, 23(18), 1585-1615. doi:10.1002/1099-1476(200012)23:18<1585::aid-mma175>;2-e

Shubov, M. A. (1997). Spectral operators generated by damped hyperbolic equations. Integral Equations and Operator Theory, 28(3), 358-372. doi:10.1007/bf01294159

Shubov, M. A., Martin, C. F., Dauer, J. P., & Belinskiy, B. P. (1997). Exact Controllability of the Damped Wave Equation. SIAM Journal on Control and Optimization, 35(5), 1773-1789. doi:10.1137/s0363012996291616

Shubov, M. A. (1996). Basis property of eigenfunctions of nonselfadjoint operator pencils generated by the equation of nonhomogeneous damped string. Integral Equations and Operator Theory, 25(3), 289-328. doi:10.1007/bf01262296

Most Cited Publications