Marianna Shubov

PROFESSOR
Phone: (603) 862-2731
Office: Mathematics & Statistics, Kingsbury Hall Rm W345, Durham, NH 03824
Marianna A. Shubov

Education

  • Ph.D., Theoretical&Math.L Physics, Saint Petersburg State University
  • M.S., Theoretical&Math.L Physics, Saint Petersburg State University

Research Interests

  • Aerodynamics
  • Aeroelasticity
  • Aeronautical/Astronautical Engineering
  • Aerospace Engineering
  • Analysis & Functional Analysis
  • Analytical Science
  • Applied Mathematics
  • Applied Sciences
  • Bioengineering
  • Continuum Mechanics
  • Distributed Systems
  • Dynamic Stability
  • Fluid Mechanics
  • Mathematical Modeling (Medical)
  • Mathematical Physics
  • Nano-Materials
  • Oscillations
  • Vibration
  • Wave Equations

Courses Taught

  • IAM 932: Graduate Partial Diff Eqns
  • MATH 647: Complex Analysis for Applictns
  • MATH 696W: Independent Study
  • MATH 745/845: Foundations of Applied Math
  • MATH 746/846: Foundations of Applied Math
  • MATH 797: Senior Seminar

Selected Publications

Shubov, M. A., & Edwards, M. M. (2021). Stability of Fluid Flow through a Channel with Flexible Walls. International Journal of Mathematics and Mathematical Sciences, 2021, 1-12. doi:10.1155/2021/8825677

Shubov, M. A. (2019). Location of eigenmodes of Euler-Bernoulli beam model under fully non-dissipative boundary conditions. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 475(2231). doi:10.1098/rspa.2019.0544

Shubov, M. A. (2018). Asymptotic and Spectral Analysis of a Model of the Piezoelectric Energy Harvester with the Timoshenko Beam as a Substructure. APPLIED SCIENCES-BASEL, 8(9). doi:10.3390/app8091434

Shubov, M. (2018). Asymptotic and spectral analysis of a model of the piezoelectric energy harvester with the Timoshenko beam as a substructure. APPLIED SCIENCES, 2018, 8, 1434; doi:10.3390., 18(8), 1434.

Shubov, M. A., & Kindrat, L. P. (2018). Spectral analysis of the Euler-Bernoulli beam model with fully nonconservative feedback matrix. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 41(12), 4691-4713. doi:10.1002/mma.4922

Shubov, M. A. (2002). Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model. MATHEMATISCHE NACHRICHTEN, 241. doi:10.1002/1522-2616(200207)241:1<125::AID-MANA125>3.0.CO;2-3

Shubov, M. A. (2000). Riesz basis property of root vectors of non-self-adjoint operators generated by aircraft wing model in subsonic airflow. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 23(18), 1585-1615. doi:10.1002/1099-1476(200012)23:18<1585::AID-MMA175>3.0.CO;2-E

Shubov, M. A., Martin, C. F., Dauer, J. P., & Belinskiy, B. P. (1997). Exact controllability of the damped wave equation. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 35(5), 1773-1789. doi:10.1137/S0363012996291616

Shubov, M. A. (1997). Spectral operators generated by damped hyperbolic equations. INTEGRAL EQUATIONS AND OPERATOR THEORY, 28(3), 358-372. doi:10.1007/BF01294159

Shubov, M. A. (1996). Basis property of eigenfunctions of nonselfadjoint operator pencils generated by the equation of nonhomogeneous damped string. INTEGRAL EQUATIONS AND OPERATOR THEORY, 25(3), 289-328. doi:10.1007/BF01262296

Most Cited Publications