Mark Lyon

Phone: (603) 862-1833
Office: Mathematics & Statistics, Kingsbury Hall Rm N309 B, Durham, NH 03824
Mark Lyon


  • Ph.D., Applied & Computational Mathematics, California Institute of Technology
  • M.S., Mechanical Engineering, Brigham Young University
  • B.S., Mechanical Engineering, Brigham Young University

Research Interests

  • Computer Modeling
  • Computer Simulation/Modeling
  • Data Analysis
  • High Performance Computing
  • Numerical Analysis
  • Numerical Models
  • Optimization
  • Wave Equations

Courses Taught

  • CS/MATH 757/857/757/857: Mathematical Optimization
  • IAM 550: Intro to Engineering Computing
  • IAM 933: Applied Functional Analysis
  • MATH 426: Calculus II
  • MATH 445: Mathematics and Apps in MATLAB
  • MATH 696: Independent Study
  • MATH 745/845: Foundations of Applied Math
  • MATH 753/853: Intro to Numerical Methods I
  • MATH 757: Mathematical Optimization
  • MATH 857: Mathematical Optimization

Selected Publications

Anderson, T. G., Bruno, O. P., & Lyon, M. (2020). High-order, Dispersionless “Fast-Hybrid” Wave Equation Solver. Part I: O(1) Sampling Cost via Incident-Field Windowing and Recentering. SIAM Journal on Scientific Computing, 42(2), A1348-A1379. doi:10.1137/19m1251953

Domínguez, V., Lyon, M., & Turc, C. (2016). Well-posed boundary integral equation formulations and Nyström discretizations for the solution of Helmholtz transmission problems in two-dimensional Lipschitz domains. Journal of Integral Equations and Applications, 28(3), 395-440. doi:10.1216/jie-2016-28-3-395

Bruno, O. P., Lyon, M., Pérez-Arancibia, C., & Turc, C. (2016). Windowed Green Function Method for Layered-Media Scattering. SIAM Journal on Applied Mathematics, 76(5), 1871-1898. doi:10.1137/15m1033782

Lyon, M., & Picard, J. (2014). The Fourier approximation of smooth but non-periodic functions from unevenly spaced data. Advances in Computational Mathematics, 40(5-6), 1073-1092. doi:10.1007/s10444-014-9342-7

Lyon, M. (2012). Approximation error in regularized SVD-based Fourier continuations. Applied Numerical Mathematics, 62(12), 1790-1803. doi:10.1016/j.apnum.2012.06.032

Lyon, M., & Bruno, O. P. (2010). High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. Journal of Computational Physics, 229(9), 3358-3381. doi:10.1016/

Bruno, O. P., & Lyon, M. (2010). High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements. Journal of Computational Physics, 229(6), 2009-2033. doi:10.1016/

Kalidindi, S. R., Houskamp, J. R., Lyons, M., & Adams, B. L. (2004). Microstructure sensitive design of an orthotropic plate subjected to tensile load. International Journal of Plasticity, 20(8-9), 1561-1575. doi:10.1016/j.ijplas.2003.11.007

Adams, B. L., Lyon, M., & Henrie, B. (2004). Microstructures by design: linear problems in elastic–plastic design. International Journal of Plasticity, 20(8-9), 1577-1602. doi:10.1016/j.ijplas.2003.11.008

Adams, B. L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S. R., & Garmestani, H. (2001). Microstructure-sensitive design of a compliant beam. Journal of the Mechanics and Physics of Solids, 49(8), 1639-1663. doi:10.1016/s0022-5096(01)00016-3

Most Cited Publications