Mark Lyon

ASSOCIATE PROFESSOR
Phone: (603) 862-1833
Office: Mathematics & Statistics, Kingsbury Hall Rm N309 B, Durham, NH 03824
Mark Lyon

Education

  • Ph.D., Applied & Computational Mathematics, California Institute of Technology
  • M.S., Mechanical Engineering, Brigham Young University
  • B.S., Mechanical Engineering, Brigham Young University

Research Interests

  • Computer Modeling
  • Computer Simulation/Modeling
  • Data Analysis
  • High Performance Computing
  • Numerical Analysis
  • Numerical Models
  • Optimization
  • Wave Equations

Courses Taught

  • CS/MATH 757/857/757/857: Mathematical Optimization
  • IAM 550: Intro to Engineering Computing
  • IAM 933: Applied Functional Analysis
  • MATH 426: Calculus II
  • MATH 445: Mathematics and Apps in MATLAB
  • MATH 696: Independent Study
  • MATH 745/845: Foundations of Applied Math
  • MATH 753/853: Intro to Numerical Methods I
  • MATH 757: Mathematical Optimization
  • MATH 857: Mathematical Optimization

Selected Publications

Anderson, T. G., Bruno, O. P., & Lyon, M. (2020). HIGH-ORDER, DISPERSIONLESS "FAST-HYBRID" WAVE EQUATION SOLVER. PART I: O(1) SAMPLING COST VIA INCIDENT-FIELD WINDOWING AND RECENTERING. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 42(2), A1348-A1379. doi:10.1137/19M1251953

Bruno, O. P., Lyon, M., Perez-Arancibia, C., & Turc, C. (2016). WINDOWED GREEN FUNCTION METHOD FOR LAYERED-MEDIA SCATTERING. SIAM JOURNAL ON APPLIED MATHEMATICS, 76(5), 1871-1898. doi:10.1137/15M1033782

Dominguez, V., Lyon, M., & Turc, C. (2016). WELL-POSED BOUNDARY INTEGRAL EQUATION FORMULATIONS AND NYSTROM DISCRETIZATIONS FOR THE SOLUTION OF HELMHOLTZ TRANSMISSION PROBLEMS IN TWO-DIMENSIONAL LIPSCHITZ DOMAINS. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 28(3), 395-440. doi:10.1216/JIE-2016-28-3-395

Lyon, M., & Picard, J. (2014). The Fourier approximation of smooth but non-periodic functions from unevenly spaced data. ADVANCES IN COMPUTATIONAL MATHEMATICS, 40(5-6), 1073-1092. doi:10.1007/s10444-014-9342-7

Lyon, M. (2012). Approximation error in regularized SVD-based Fourier continuations. APPLIED NUMERICAL MATHEMATICS, 62(12), 1790-1803. doi:10.1016/j.apnum.2012.06.032

Lyon, M., & Bruno, O. P. (2010). High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. JOURNAL OF COMPUTATIONAL PHYSICS, 229(9), 3358-3381. doi:10.1016/j.jcp.2010.01.006

Bruno, O. P., & Lyon, M. (2010). High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements. JOURNAL OF COMPUTATIONAL PHYSICS, 229(6), 2009-2033. doi:10.1016/j.jcp.2009.11.020

Kalidindi, S. R., Houskamp, J. R., Lyons, M., & Adams, B. L. (2004). Microstructure sensitive design of an orthotropic plate subjected to tensile load. International Journal of Plasticity, 20(8-9), 1561-1575. doi:10.1016/j.ijplas.2003.11.007

Adams, B. L., Lyon, M., & Henrie, B. (2004). Microstructures by design: linear problems in elastic-plastic design. INTERNATIONAL JOURNAL OF PLASTICITY, 20(8-9), 1577-1602. doi:10.1016/j.ijplas.2003.11.008

Adams, B. L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S. R., & Garmestani, H. (2001). Microstructure-sensitive design of a compliant beam. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 49(8), 1639-1663. doi:10.1016/S0022-5096(01)00016-3

Most Cited Publications