Marko Knezevic

Associate Professor
Phone: (603) 862-5179
Office: Mechanical Engineering, Kingsbury Hall Rm W119, Durham, NH 03824
Marko Knezevic


  • Ph.D., Materials Engineering, Drexel University
  • M.S., University of Novi Sad
  • B.S., University of Novi Sad

Courses Taught

  • ME 643: Machine Design
  • ME 727: Advanced Mechanics of Solids
  • ME 922: Continuum Mechanics
  • ME 999: Doctoral Research
  • MS 999: Doctoral Research

Selected Publications

Zecevic, M., & Knezevic, M. (2018). A new visco-plastic self-consistent formulation implicit in dislocation-based hardening within implicit finite elements: Application to high strain rate and impact deformation of tantalum. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 341, 888-916. doi:10.1016/j.cma.2018.07.027

Eghtesad, A., Barrett, T. J., & Knezevic, M. (2018). Compact reconstruction of orientation distributions using generalized spherical harmonics to advance large-scale crystal plasticity modeling: Verification using cubic, hexagonal, and orthorhombic polycrystals. Acta Materialia, 155, 418-432. doi:10.1016/j.actamat.2018.06.017

Eghtesad, A., & Knezevic, M. (2018). A new approach to fluid?structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution. Computational Particle Mechanics, 5(3), 387-409. doi:10.1007/s40571-017-0176-1

Zecevic, M., & Knezevic, M. (2018). Latent hardening within the elasto-plastic self-consistent polycrystal homogenization to enable the prediction of anisotropy of AA6022-T4 sheets. International Journal of Plasticity, 105, 141-163. doi:10.1016/j.ijplas.2018.02.007

Ardeljan, M., Knezevic, M., Jain, M., Pathak, S., Kumar, A., Li, N., . . . Beyerlein, I. J. (2018). Room temperature deformation mechanisms of Mg/Nb nanolayered composites. Journal of Materials Research, 33(10), 1311-1332. doi:10.1557/jmr.2018.107

Knezevic, M., McCabe, R. J., Lebensohn, R. A., Tome, C. N., Liu, C., Lovato, M. L., & Mihaila, B. (2013). Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals. Journal of the Mechanics and Physics of Solids, 61(10), 2034-2046. doi:10.1016/j.jmps.2013.05.005

Knezevic, M., Beyerlein, I. J., Brown, D. W., Sisneros, T. A., & Tome, C. N. (2013). A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium. International Journal of Plasticity, 49, 185-198. doi:10.1016/j.ijplas.2013.03.008

Knezevic, M., Lebensohn, R. A., Cazacu, O., Revil-Baudard, B., Proust, G., Vogel, S. C., & Nixon, M. E. (2013). Modeling bending of ?-titanium with embedded polycrystal plasticity in implicit finite elements. Materials Science and Engineering: A, 564, 116-126. doi:10.1016/j.msea.2012.11.037

Knezevic, M., Levinson, A., Harris, R., Mishra, R. K., Doherty, R. D., & Kalidindi, S. R. (2010). Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Materialia, 58(19), 6230-6242. doi:10.1016/j.actamat.2010.07.041

Knezevic, M., Kalidindi, S. R., & Fullwood, D. (2008). Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals. International Journal of Plasticity, 24(7), 1264-1276. doi:10.1016/j.ijplas.2007.12.002

Most Cited Publications