Marko Knezevic

ASSOCIATE PROFESSOR
Phone: (603) 862-5179
Office: Mechanical Engineering, Kingsbury Hall Rm W119, Durham, NH 03824
Marko Knezevic

Prof. Knezevic joined the faculty of the Mechanical Engineering Department in spring semester 2013. Prior to joining the department, he worked at Scientific Forming Technologies Corporation in Columbus, OH from 2009 to 2011 as a principal research scientist for development of the commercial finite-element software DEFORM used for analysis of manufacturing processes. After industrial experience, he was with the Materials Science and Technology Division at Los Alamos National Laboratory in Los Alamos, NM from 2011 to 2013 as the LANL Seaborg Institute Postdoctoral Fellow.

Prof. Knezevic’s research is focused on understanding of materials behavior under complex loading using a combination of computational methods and experiments, development of constitutive material models, design and manufacturing at component levels, materials design at microstructural length scales, as well as the development of high-performance computational applications integrating multi-scale material models for predicting materials behavior.

Education

  • Ph.D., Materials Engineering, Drexel University
  • M.S., University of Novi Sad
  • B.S., University of Novi Sad

Courses Taught

  • ME 643: Machine Design
  • ME 727/827: Advanced Mechanics of Solids
  • ME 797: Honors Seminar
  • ME 922: Continuum Mechanics
  • ME 999: Doctoral Research
  • MS 999: Doctoral Research

Selected Publications

Cluff, S., Knezevic, M., Miles, M. P., Fullwood, D. T., Mishra, R. K., Sachdev, A. K., . . . Homer, E. R. (2021). Coupling kinetic Monte Carlo and finite element methods to model the strain path sensitivity of the isothermal stress-assisted martensite nucleation in TRIP-assisted steels. Mechanics of Materials, 154, 103707. doi:10.1016/j.mechmat.2020.103707

Feather, W. G., Lim, H., & Knezevic, M. (2021). A numerical study into element type and mesh resolution for crystal plasticity finite element modeling of explicit grain structures. Computational Mechanics, 67(1), 33-55. doi:10.1007/s00466-020-01918-x

Riyad, I. A., Feather, W. G., Vasilev, E., Lebensohn, R. A., McWilliams, B. A., Pilchak, A. L., & Knezevic, M. (2021). Modeling the role of local crystallographic correlations in microstructures of Ti-6Al-4V using a correlated structure visco-plastic self-consistent polycrystal plasticity formulation. Acta Materialia, 203, 116502. doi:10.1016/j.actamat.2020.116502

Feng, Z., Zecevic, M., & Knezevic, M. (2021). Stress-assisted (γ→α′) and strain-induced (γ→ε→α′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels. International Journal of Plasticity, 136, 102807. doi:10.1016/j.ijplas.2020.102807

Barrett, T. J., Takagi, S., Islam, N., Kuwabara, T., Hassan, T., Kinsey, B. L., . . . Korkolis, Y. P. (2021). Material modeling and simulation of continuous-bending-under-tension of AA6022-T4. Journal of Materials Processing Technology, 287, 116658. doi:10.1016/j.jmatprotec.2020.116658

Knezevic, M., Zecevic, M., Beyerlein, I. J., Bingert, J. F., & McCabe, R. J. (2015). Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr. Acta Materialia, 88, 55-73. doi:10.1016/j.actamat.2015.01.037

Ardeljan, M., Beyerlein, I. J., & Knezevic, M. (2014). A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites. Journal of the Mechanics and Physics of Solids, 66, 16-31. doi:10.1016/j.jmps.2014.01.006

Knezevic, M., Beyerlein, I. J., Brown, D. W., Sisneros, T. A., & Tomé, C. N. (2013). A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium. International Journal of Plasticity, 49, 185-198. doi:10.1016/j.ijplas.2013.03.008

Knezevic, M., Lebensohn, R. A., Cazacu, O., Revil-Baudard, B., Proust, G., Vogel, S. C., & Nixon, M. E. (2013). Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements. Materials Science and Engineering: A, 564, 116-126. doi:10.1016/j.msea.2012.11.037

Knezevic, M., Levinson, A., Harris, R., Mishra, R. K., Doherty, R. D., & Kalidindi, S. R. (2010). Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Materialia, 58(19), 6230-6242. doi:10.1016/j.actamat.2010.07.041

Most Cited Publications